Skip to main content
Log in

Flower colours in temperate forest and grassland habitats: a comparative study

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Flower colours are important cues shaping the interaction between plants and pollinators. Plants flowering in distinct habitats like grasslands and forests present their flowers in very different light environments and against different backgrounds. Since most Angiosperms depend on or profit from pollination by animals, plants may exhibit flower colours that are most conspicuous when seen in the predominant illumination or against the predominant background colour of their environment. To compare flower colours of different habitats, we collected flower reflectance spectra of 239 herbs from forest and grassland sites in three German regions. We compared chromatic and achromatic components of flower colours from the honeybee’s point of view as well as in principal component analysis (PCA) to exclude the bias of particular visual systems. Our results show that flower colours do not differ between closed forest and open grassland habitats in any chromatic or achromatic aspect both from the bee’s perspective and without any model bias (PCA). Thus, although the colours of lights and backgrounds are different between both types of habitats, we find no evidence of an adaptation of flower colours to the visual system of bees. The finding that flower colours look similar for bees in different environments may be related to a mechanism called colour constancy which allows bees and other pollinator species to compensate for varying illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold SEJ, Chittka L (2012) Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light. J Exp Biol 215:2173–2180. doi:10.1242/jeb.065565

    Article  PubMed  Google Scholar 

  • Avarguès-Weber A, Mota T, Giurfa M (2012) New vistas on honey bee vision. Apidologie 43:244–268. doi:10.1007/s13592-012-0124-2

    Article  Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397

    Article  CAS  PubMed  Google Scholar 

  • Baker HG, Hurd PD (1968) Interfloral ecology. Annu Rev Entomol 13:385–414

    Article  Google Scholar 

  • Beattie AJ (1969) Studies in the pollination ecology of Viola. 1. The pollen-content of stigmatic cavities. Watsonia 7:142–156

    Google Scholar 

  • Benard J, Giurfa M (2008) The cognitive implications of asymmetric colour generalization in honeybees. Anim Cogn 11:283–293. doi:10.1007/s10071-007-0112-5

    Article  PubMed  Google Scholar 

  • Ben-Tal Y, King RW (1997) Environmental factors involved in colouration of flowers of Kangaroo Paw. Sci Hortic 72:35–48. doi:10.1016/S0304-4238(97)00071-X

    Article  Google Scholar 

  • Binkenstein J, Renoult JP, Schaefer HM (2013) Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands. Oecologia 173:461–471. doi:10.1007/s00442-013-2627-6

    Article  PubMed  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Chittka L (1999) Bees, white flowers, and the colour hexagon—a reassessment? No, not yet. Naturwissenschaften 86:595–597

    Article  CAS  Google Scholar 

  • Chittka L, Beier W, Hertel H (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170:545–563

    CAS  PubMed  Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vis Res 34:1489–1508

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Chittka L, Spaethe J, Schmidt A, Hickelsberger A (2001) Adaptation, constraint, and chance in the evolution of flower colour and pollinator colour vision. In: Chittka L, Thomson JD (eds) Cogn. Ecol. Pollinat. Cambridge University Press, Cambridge, pp 106–126

    Chapter  Google Scholar 

  • Chittka L, Faruq S, Skorupski P, Werner A (2014) Colour constancy in insects. J Comp Physiol A 200:435–448. doi:10.1007/s00359-014-0897-z

    Article  Google Scholar 

  • Christ K-D (2004) Die Blütenökologie der Krautschicht naturnaher Wälder in der Umgebung von Ulm, Süddeutschland. Dissertation

  • Cuthill IC, Bennett ATD, Partridge JC, Maier EJ (1999) Plumage reflectance and the objective assessment of avian sexual dichromatism. Am Nat 153:183–200

    Article  Google Scholar 

  • Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dyer AG (2006) Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae). Entomol Gen 28:257–268

    Article  Google Scholar 

  • Dyer AG, Chittka L (2004) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol 190:105–114. doi:10.1007/s00359-003-0475-2

    Article  CAS  Google Scholar 

  • Dyer AG, Boyd-Gerny S, McLoughlin S et al (2012) Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc R Soc B Biol Sci 279:3606–3615. doi:10.1098/rspb.2012.0827

    Article  Google Scholar 

  • Endler JA (1993) The colour of light in forests and its implications. Ecol Monogr 63:1–27

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Faruq S, McOwan PW, Chittka L (2013) The biological significance of colour constancy: an agent-based model with bees foraging from flowers under varied illumination. J Vis 13:10. doi:10.1167/13.10.10

    Article  PubMed  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S et al (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  • Frey FM (2004) Opposing natural selection from herbivores and pathogenes may maintain floral-colour variation in Claytonia virginica (Portulacaceae). Evolution 58:2426–2437. doi:10.1111/j.0014-3820.2004.tb00872.x

    Article  PubMed  Google Scholar 

  • Giurfa M, Vorobyev M (1998) The angular range of achromatic target detection by honeybees. J Comp Physiol A 183:101–110

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43. doi:10.1007/s002650000213

    Article  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M, Brandt R, Giurfa M (2000) Detection of bright and dim colours by honeybees. J Exp Biol 203:3289–3298

    CAS  PubMed  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2002) Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 188:503–512. doi:10.1007/s00359-002-0322-x

    Article  CAS  Google Scholar 

  • Hensel LE, Sargent RD (2012) A phylogenetic analysis of trait convergence in the spring flora. Botany 90:557–564. doi:10.1139/b2012-029

    Article  Google Scholar 

  • Irwin RE, Strauss SY, Storz S et al (2003) The role of herbivores in the maintenance of a flower colour polymorphism in wild radish. Ecology 84:1733–1743

    Article  Google Scholar 

  • Johnson ET, Berhow MA, Dowd PF (2008) Colored and white sectors from star-patterned Petunia flowers display differential resistance to corn earworm and cabbage looper larvae. J Chem Ecol 34:757–765. doi:10.1007/s10886-008-9444-0

    Article  CAS  PubMed  Google Scholar 

  • Klooster MR, Clark DL, Culley TM (2009) Cryptic bracts facilitate herbivore avoidance in the mycoheterotrophic plant Monotropsis odorata (Ericaceae). Am J Bot 96:2197–2205. doi:10.3732/ajb.0900124

    Article  PubMed  Google Scholar 

  • Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147

    Article  CAS  Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489

    Article  Google Scholar 

  • Lynn SK, Cnaani J, Papaj DR (2005) Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300–1305. doi:10.1111/j.0014-3820.2005.tb01780.x

    Article  PubMed  Google Scholar 

  • Martínez-Harms J, Márquez N, Menzel R, Vorobyev M (2014) Visual generalization in honeybees: evidence of peak shift in color discrimination. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:317–325. doi:10.1007/s00359-014-0887-1

    Article  PubMed  Google Scholar 

  • Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120

    Article  Google Scholar 

  • Mori M, Yoshida K, Ishigaki Y et al (2005) UV-B protective effect of a polyacylated anthocyanin, HBA, in flower petals of the blue morning glory, Ipomoea tricolor cv. Heavenly Blue. Bioorg Med Chem 13:2015–2020. doi:10.1016/j.bmc.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  • Motten AF (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42

    Article  Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honeybee: successive color contrast and color constancy. J Comp Physiol 144:543–553

    Article  Google Scholar 

  • Neumeyer C (1998) Comparative aspects of colour constancy. In: Walsh V, Kulikowski J (eds) Percept. Constancy why things look they do. Cambridge University Press, Cambridge, pp 323–351

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi:10.1111/j.1600-0706.2010.18644.x

    Article  Google Scholar 

  • Osorio D, Vorobyev M (2008) A review of the evolution of animal colour vision and visual communication signals. Vis Res 48:2042–2051. doi:10.1016/j.visres.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H et al (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  CAS  PubMed  Google Scholar 

  • Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS One 2:e556. doi:10.1371/journal.pone.0000556

    Article  PubMed Central  PubMed  Google Scholar 

  • Schaefer HM, Ruxton GD (2011) Plant–animal communication. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower colour in the desert annual Linanthus parryae: Was Wright right? Evolution 61:2528–2543. doi:10.1111/j.1558-5646.2007.00219.x

    Article  PubMed  Google Scholar 

  • Schemske DW, Willson MF, Melampy MN et al (1978) Flowering ecology of some spring woodland herbs. Ecology 59:351–366

    Article  Google Scholar 

  • Schmidt M, Ewald J, Fischer A et al (2003) Liste der in Deutschland typischen Waldgefäßpflanzen. Mitteilungen Bundesforschungsanstalt Für Forst- Holzwirtsch 212:1–33

    Google Scholar 

  • Shirreffs D (1985) Biological flora of the British Isles. Anemone nemorosa L. J Ecol 73:1005–1020

    Article  Google Scholar 

  • Showler AJ, Rich TCG (1993) Cardamine bulbifera (L.) Crantz (Cruciferae) in the British Isles. Watsonia 19:231–245

    Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and colour affect search time and flight behavior. PNAS 98:3898–3903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stoddard MC, Prum RO (2008) Evolution of avian plumage colour in a tetrahedral colour space: a phylogenetic analysis of New World Buntings. Am Nat 171:755–776. doi:10.1086/587526

    Article  PubMed  Google Scholar 

  • Valido A, Schaefer HM, Jordano P (2011) Colour, design and reward: phenotypic integration of fleshy fruit displays: phenotypic integration of fleshy fruits. J Evol Biol 24:751–760. doi:10.1111/j.1420-9101.2010.02206.x

    Article  CAS  PubMed  Google Scholar 

  • Vamosi JC, Knight TM, Steets JA et al (2006) Pollination decays in biodiversity hotspots. Proc Natl Acad Sci 103:956–961. doi:10.1073/pnas.0507165103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vorobyev M, Brandt R (1997) How do insect pollinators discriminate colors? Isr J Plant Sci 45:103–113. doi:10.1080/07929978.1997.10676677

    Article  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc Biol Sci 265:351–358. doi:10.1098/rspb.1998.0302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We thank Kalliope Stournaras for valuable comments on the manuscript. We thank A. Bogenrieder and S. Boch for helping to identify plant species. We thank B. Kreuzinger-Janik, K. Kohlberg, J. Kramer, and D. Behringer for field assistance. We thank the managers of the three Exploratories, Swen Renner, Sonja Gockel, Kerstin Wiesner, and Martin Gorke, for their work in maintaining the plot and project infrastructure; Simone Pfeiffer and Christiane Fischer for giving support through the central office; Michael Owonibi for managing the central data base; and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser, and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the German Research Foundation (DFG) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Scha1008/5-1) and by the FAZIT-Stiftung. Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). Data collection complies with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Binkenstein.

Additional information

Handling Editor: Lars Chittka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binkenstein, J., Schaefer, H.M. Flower colours in temperate forest and grassland habitats: a comparative study. Arthropod-Plant Interactions 9, 289–299 (2015). https://doi.org/10.1007/s11829-015-9369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9369-9

Keywords

Navigation