Skip to main content
Log in

Does leaf ontogeny lead to changes in defensive strategies against insect herbivores?

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plants use different defense strategies throughout their ontogenetic development. In this study, three questions were proposed: (1) Is there a greater abundance of ants on young leaves, which possess active extrafloral nectaries, than on mature leaves? (2) Do ants exert an indirect defense that is effective against the attack of herbivorous insects? (3) Do mature leaves have a greater concentration of physical and chemical defense than young leaves? These questions were addressed through an ant-exclusion experiment in which two branches of Copaifera langsdorffii (n = 25) were marked and monitored throughout the entire foliar expansion and development period. A reduction in the abundance of ants throughout foliar development was observed. The ants exerted an effective defense against herbivores on C. langsdorffii: the branches where ants were excluded had a greater number of herbivores. The mature leaves possessed a greater index of leaf sclerophylly than young leaves, but the leaves did not differ in the concentration of tannins. The foliar ontogeny of C. langsdorffii promoted an inversion in the defense strategy against herbivores, and despite showing an opportunistic relationship, the interaction between ants and extrafloral nectaries appears to play an important role in structuring the interactions between herbivorous insects and their host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal VM, Rastogi N (2009) Spatiotemporal dynamics and plant-part preference patterns of the plant-visiting ants and the insect herbivores of sponge gourd plants. J Asia Pacific Entomol 12:57–66

    Article  Google Scholar 

  • Almeida SP, Proença CEB, Sano SM, Ribeiro JF (1998) Cerrado: Espécies vegetais úteis. Embrapa, Planaltina

    Google Scholar 

  • Bentley BL (1976) Plants bearing extrafloral nectaries and associated ant community interhabitat differences in the reduction of herbivore damage. Ecology 57:815–820

    Article  Google Scholar 

  • Bentley BL (1977) The protective function of ants visiting the extrafloral nectaries of Bixa orellana l. (Bixaceae). J Ecol 65:27–38

    Article  Google Scholar 

  • Bixenman RJ, Coley PD, Kursar TA (2011) Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant–plant mutualism? Oecologia 165:417–425

    Article  Google Scholar 

  • Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Article  Google Scholar 

  • Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthloot W (2000) How plants shape the ant community in the amazonian rainforest canopy: the key role of extrafloral nectaries and hemipteran honeydew. Oecologia 125:229–240

    Article  Google Scholar 

  • Blüthgen N, Gottsberger G, Fiedler K (2004a) Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian Rainforest. Austral Ecol 29:418–429

    Article  Google Scholar 

  • Blüthgen N, Stork NE, Fiedler K (2004b) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358

    Article  Google Scholar 

  • Borror DJ, Triplehorn CA, Johnson NF (2002) An introduction to the study of insects. Saunders College Publing, Philadelphia

    Google Scholar 

  • Campos RI, Lopes CT, Magalhães WCS, Vasconcelos HL (2008) Estratificação vertical de formigas em cerrado strictu sensu no Parque Estadual da Serra de Caldas Novas, Goiás, Brasil. Iheringia 98:311–316

    Article  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant–plant protection mutualisms. Ecology 90:2384–2392

    Article  PubMed  Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a Lowland Tropical Forest. Ecol Monogr 53:209–234

    Article  Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate and tropical broad- leafed forests. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Coley PD, Barone J (2001) Ecology of defenses. In: Levin S (ed) Encyclopedia of biodiversity. Academic Press, London, pp 1–21

  • Coley PD, Bryant JP, Chapin (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Coley PD, Lokvam J, Rudolph K, Bromberg K, Sackett TE, Wright L, Brenes-Arguedas T, Dvorett S, Ring S, Clark A, Baptiste C, Pennington RT, Kursar TA (2005) Divergent defensive strategies of young leaves in two species of Inga. Ecology 86:2633–2643

    Article  Google Scholar 

  • Cornelissen TG, Fernandes GW (2001) Defence, growth and nutrient allocation in the tropical shrub Bauhinia brevipes (Leguminosae). Aust Ecol 26:246–253

    Article  Google Scholar 

  • Costa FV, Fagundes M, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Aust 20:9–17

    Google Scholar 

  • Costa FV, Neves FS, Silva JO, Fagundes M (2011) Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact 5:9–18

    Article  Google Scholar 

  • Coutinho IAC, Valente VMM, Meira RMSA (2010) Ontogenetic, anatomical and histochemical study of the extrafloral nectaries of Sapium biglandulosum (Euphorbiaceae). Aust J Bot 58:224–232

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Del Claro K, Berto V, Réu W (1996) Effect of herbivore deterrence by ants on the fruit set of an extrafloral nectary plant, Qualea multiflora (Vochysiaceae). J Trop Ecol 12:887–892

    Article  Google Scholar 

  • Del Val E, Dirzo R (2003) Does ontogeny cause changes in the defensive strategies of the myrmecophyte Cecropia peltata? Plant Ecol 169:35–41

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eiten G (1979) Formas fisionômicas do Cerrado. Rev Bras Bot 2:139–148

    Google Scholar 

  • Fagundes M, Neves F, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Fernández F (2003) Introducción a las hormigas de la región Neotropical. Instituto Humboldt, Bogotá

    Google Scholar 

  • Folgarait PJ, Davidson DW (1994) Antiherbivore defenses of myrmecophytic Cecropia under different light regimes. Oikos 71:305–320

    Article  Google Scholar 

  • Folgarait PJ, Davidson DW (1995) Myrmecophytic Cecropia: antiherbivore defenses under different nutrient treatments. Oecologia 104:189–206

    Article  Google Scholar 

  • Gonçalves-Alvim SJ, Korndorf G, Fernandes GW (2006) Sclerophylly in Qualea parviflora (Vochysiaceae): influence of herbivory, mineral nutrients, and water status. Plant Ecol 187:153–162

    Article  Google Scholar 

  • Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. J Chem Ecol 13:437–449

    Article  CAS  Google Scholar 

  • Haridasan M (1992) Observations of soils, foliar nutrient concentration and floristic composition of cerrado sensu stricto and cerradão communities in Central Brazil. In: Proctor J, Ratter JA, Furley PA (eds) Nature and dynamics of Forest-Savanna boundaries. Chapman and Hall, London, pp 171–184

    Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Holland JN, Chamberlain SA, Horn KC (2009) Optimal defence theory predicts investment in extrafloral nectar resources in an ant–plant mutualism. J Ecol 97:89–96

    Article  Google Scholar 

  • Izzo TJ, Vasconcelos HL (2005) Ants and plant size shape the structure of the arthropod community of Hirtella myrmecophila, an Amazonian ant-plant. Ecol Entomol 30:650–656

    Article  Google Scholar 

  • Janzen D (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249–275

    Article  Google Scholar 

  • Kaminski LA, Freitas AVL, Oliveira PS (2010) Interaction between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am Nat 176:322–334

    Article  PubMed  Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima beans (Phaseoluslunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Article  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergente in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 21:929–949

    Article  Google Scholar 

  • Moraes SC, Vasconcelos HL (2009) Long-term persistence of a neotropical ant-plant population in the absence of obligate plant-ants. Ecology 90:2375–2383

    Article  PubMed  Google Scholar 

  • Neves FS, Araújo LS, Espírito-Santo MM, Fagundes M, Fernandes GW, Sanchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest-savanna transition in Brazil. Biotropica 42:112–118

    Article  Google Scholar 

  • Neves FS, Fagundes M, Sperber CF, Fernandes GW (2011) Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthropod Plant Interact 5:351–357

    Article  Google Scholar 

  • Oliveira PS, Freitas AVL (2004) Ant-plant-herbivore interactions in the neotropical Cerrado Savanna. Naturwissenschaften 91:557–570

    Article  PubMed  CAS  Google Scholar 

  • Oliveira PS, Leitão-Filho HF (1987) Extrafloral nectaries: their taxonomic distribution and abundance in the woody flora of Cerrado vegetation in Southeast Brazil. Biotropica 19:140–148

    Article  Google Scholar 

  • Oliveira PS, Oliveira-Filho AT (1991) Distribution of extrafloral nectaries in tropical communities of Western Brazil. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 163–175

    Google Scholar 

  • Oliveira PS, Rico-Gray V, Diaz-Castelazo C, Castillo-Guevara C (1999) Interaction between ants, extrafloral nectaries, and insect herbivores in neotropical coastal sand dunes: herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Funct Ecol 13:623–631

    Article  Google Scholar 

  • Pedroni F, Sanchez M, Santos AM (2002) Fenologia da copaíba (Copaifera langsdorffii desf.—Leguminosae, Caesalpinioideae) em uma floresta semidecídua no Sudeste do Brasil. Rev Bras Bot 25:183–194

    Article  Google Scholar 

  • Rasband WS (2006) ImageJ, US. National Institutes of Health, Bethesda, Maryland, http://rsb.info.nih.gov/ij. Accessed 29 July 2009

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen D (eds) Herbivores: their interaction with secondary plant metabolits. Academic Press, New York, pp 3–54

    Google Scholar 

  • Ribeiro SP, Pimenta HR, Fernandes GW (1994) Herbivory by chewing and sucking insects on Tabebuia ochracea. Biotropica 26:302–307

    Article  Google Scholar 

  • Rickson FR (1971) Glycogen plastids in müllerian body cells of Cecropia peltata—a higher green plant. Science 173:344–347

    Article  PubMed  CAS  Google Scholar 

  • Rico-Gray V, Garcia-Franco JG, Palacios-Rios M, Díaz-Castelazo C, Parra-Tabla V, Navarro JA (1998) Geographical and seasonal variation in the richness of ant–plant interactions in Mexico. Biotropica 30:190–200

    Article  Google Scholar 

  • Rico-Gray V, Oliveira PS, Parra-Tabla V, Cuautle M, Díaz-Castelazo C (2004) Ant-plant interactions: their seasonal variation and effects on plant fitness. In: Martínez ML, Psuty N, Lubke R (eds) Coastal sand dunes: ecology and restoration. Springer, Berlin, pp 221–239

    Google Scholar 

  • Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A, Guimarães PR Jr, Holland JN (2012) Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod Plant Interact 6:289–295

    Article  Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito Cultural, Rio de Janeiro

    Google Scholar 

  • Rosumek FB, Silveira FAO, Neves FS, Barbosa NPU, Diniz L, Oki Y, Pezzini F, Fernandes GW, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549

    Article  PubMed  Google Scholar 

  • Santos RM, Vieira FA, Fagundes M, Nunes YRF, Gusmão E (2007) Riqueza e similaridade florística de oito remanescentes florestais no norte de Minas Gerais. Rev Árvore 31:135–144

    Article  Google Scholar 

  • Schoereder JH, Sobrinho TG, Madureira MS, Ribas CR, Oliveira PS (2010) The arboreal ant community visiting extrafloral nectaries in the neotropical Cerrado Savanna. Terrestria Arthropod Rev 3:3–27

    Article  Google Scholar 

  • Silva JO, Jesus FM, Fagundes M, Fernandes GW (2009) Esclerofilia, taninos e insetos herbívoros associados a Copaifera lagsdorffii desf. (Fabaceae: Caesalpinioideae) em área de transição Cerrado-Caatinga no Brasil. Ecol Aust 19:197–206

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing, http://www.r-project.org. Accessed 15 August 2009

  • Tegelaar K, Hagman M, Glinwood R, Pettersson J, Leimar O (2012) Ant–aphid mutualism: the influence of ants on the aphid summer cycle. Oikos 121:61–66

    Article  Google Scholar 

  • Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal MA, McKeon CS, Osenberg CW, Bolker BM (2010) Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS ONE 5:e14308

    Article  PubMed  CAS  Google Scholar 

  • Traw MB, Feeny P (2008) Glucosinolates and trichomes track tissue value in two sympatric mustards. Ecology 89:763–772

    Article  PubMed  Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Yamashiro A, Yamashiro T (2008) Utilization on extrafloral nectaries and fruit domatia of Canavalia lineata and C. cathartica (Leguminosae) by ants. Arthropod Plant Interact 2:1–8

    Article  Google Scholar 

Download references

Acknowledgments

We thank MLB Maia and LQ Oliveira for help with the field studies. We thank to FB Baccaro for useful comments in previous versions of this manuscript. This study received financial support from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (APQ-01231-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico de Siqueira Neves.

Additional information

Handling Editor: Kris Wyckhuys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Queiroz, A.C.M., da Costa, F.V., de Siqueira Neves, F. et al. Does leaf ontogeny lead to changes in defensive strategies against insect herbivores?. Arthropod-Plant Interactions 7, 99–107 (2013). https://doi.org/10.1007/s11829-012-9224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-012-9224-1

Keywords

Navigation