Skip to main content

Advertisement

Log in

Polygalacturonase causes lygus-like damage on plants: cloning and identification of western tarnished plant bug (Lygus hesperus) polygalacturonases secreted during feeding

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Polygalacturonase (PG), an enzyme that degrades pectin within the plant tissue cell wall, has been postulated as the chemical cause of damage to plants by the mirid Lygus hesperus. Micro-injection of two pure recombinant Aspergillus niger PG II protein forms, the wild type enzymically active and the mutant inactive one, into alfalfa (Medicago sativa L.) florets, demonstrates that the enzymatic activity rather than the PG protein structure per se elicits damage symptoms. A PG gene family has been described for the tarnished plant bug, L. lineolaris. Here we report cloning members of the L. hesperus PG gene family, Lhpg2, obtained with L. lineolaris PG-specific primers and a novel Lhpg4, amplified with degenerate primers that were designed based, in part on the N-terminal sequence from an active, partially purified L. hesperus salivary gland PG protein. Proteomic analyses revealed that the salivary gland PGs encoded by Lhpg2 and Lhpg4 are detected in a diet into which L. hesperus has extruded its saliva when feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agblor A, Henderson HM, Madrid FJ (1994) Characterization of alpha-amylase and polygalacturonase from Lygus spp. (Heteroptera; Miridae). Food Res Int 27:321–326

    Article  CAS  Google Scholar 

  • Allen ML (2007) Expressed sequenced tags from Lygus lineolaris (Hemiptera: Miridae), the tarnished plant bug. Genet Mol Res 6:206–213

    PubMed  CAS  Google Scholar 

  • Allen ML, Mertens JA (2008) Molecular cloning and expression of three polygalacturonase cDNAs from the tarnished plant bug, Lygus lineolaris. J Insect Sci 8:27

    Article  Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Armand S, Wagemaker MJM, Sanchez-Torres P, Kester HCM, van Santen Y, Dijkstra BW, Visser J, Benen JAE (2000) The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. J Biol Chem 275:691–696

    Article  PubMed  CAS  Google Scholar 

  • Celorio-Mancera MP, Greve LC, Teuber LR, Labavitch JM (2009) Identification of endo- and exo-polygalacturonase activity in Lygus hesperus (Knight) salivary glands. Arch Insect Biochem Physiol 70(2). doi:10.1002.arch.20282

    Google Scholar 

  • Doostdar H, McCollum TG, Mayer RT (1997) Purification and characterization of an endo-polygalacturonase from the gut of West Indies sugarcane rootstalk borer weevil (Diaprepes abbreviatus L.) larvae. Comp Biochem Physiol B Biochemi Mol Biol 118:861–867

    Article  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004a) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. Biochim Biophys Acta Proteins Proteomics 1696:237–244

    Article  CAS  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004b) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  CAS  Google Scholar 

  • Ebel J, Mithöfer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    Article  CAS  Google Scholar 

  • Esser K, Lemke PA (eds) (1994) The mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research, vol 5. Springer-Verlag, Berlin

    Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  PubMed  CAS  Google Scholar 

  • Frati F, Galletti R, De Lorenzo G, Salerno G, Conti E (2006) Activity of endo-polygalacturonases in mirid bugs (Heteroptera: Miridae) and their inhibition by plant cell wall proteins (PGIPs). Eur J Entomol 103:515–522

    CAS  Google Scholar 

  • Furman-Matarasso N, Cohen E, Du QS, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol 121:345–351

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Girard C, Jouanin L (1999) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem Mol Biol 29:1129–1142

    Article  PubMed  CAS  Google Scholar 

  • Habibi J, Backus EA, Coudron TA, Brandt SL (2001) Effect of different host substrates on hemipteran salivary protein profiles. Entomol Exp Appl 98:369–375

    Article  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Laurema S, Varis AL (1991) Salivary amino-acids in Lygus species (Heteroptera, Miridae). Insect Biochem 21:759–765

    Article  CAS  Google Scholar 

  • Leigh TF, Jackson CE, Wynholds PF, Cota JA (1977) Toxicity of selected insecticides applied topically to Lygus hesperus. J Econ Entomol 70:42–44

    CAS  Google Scholar 

  • Li RG, Rimmer R, Yu M, Sharpe AG, Seguin-Swartz G, Lydiate D, Hegedus DD (2003) Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217:299–308

    PubMed  CAS  Google Scholar 

  • Markovic O, Janecek S (2001) Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng 14:615–631

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    Article  PubMed  CAS  Google Scholar 

  • Mueller SC, Summers GG, Goodell PB (2003) Key features of common Lygus species in the central San Joaquin Valley. http://www.anrcatalog.ucdavis.edu/pdf/8105.pdf

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Pickersgill R, Smith D, Worboys K, Jenkins J (1998) Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J Biol Chem 273:24660–24664

    Article  PubMed  CAS  Google Scholar 

  • Powell ALT, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Pare PW (2002) Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J Chem Ecol 28:1733–1747

    Article  PubMed  CAS  Google Scholar 

  • Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419

    Article  PubMed  CAS  Google Scholar 

  • Schaefer CW, Panizzi AR (eds) (2000) Heteroptera of economic importance. CRC Press, Boca Raton

    Google Scholar 

  • Shackel KA, Celorio-Mancera MP, Ahmadi H, Greve LC, Teuber LR, Backus EA, Labavitch JM (2005) Micro-injection of Lygus salivary gland proteins to simulate feeding damage in alfalfa and cotton flowers. Arch Insect Biochem Physiol 58:69–83

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Denton M, Mutti N, Pappan K, Kanost MR, Reese JC, Reeck GR (2003) Polygalacturonase from Sitophilus oryzae: possible horizontal transfer of a pectinase gene from fungi to weevils. J Insect Sci 3:1–9

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Strong FE (1970) Physiology of injury caused by Lygus hesperus. J Econ Entomol 63:808–814

    CAS  Google Scholar 

  • Strong FE, Kruitwagen EC (1968) Polygalacturonase in salivary apparatus of Lygus hesperus (Hemiptera). J Insect Physiol 14:1113-1119

    Article  CAS  Google Scholar 

  • Taylor G, Secor G (1988) An improved diffusion assay for quantifying the polygalacturonase content of Erwinia culture filtrates. Phytopathology 78:1101–1103

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • Varis AL, Laurema S, Miettinen H (1983) Variation of enzyme-activities in the salivary glands of Lygus rugulipennis (Hemiptera, Miridae). Ann Entomol Fenn 49:1–10

    Google Scholar 

  • Williams L, Tugwell NP (2000) Histological description of tarnished plant bug (Heteroptera: Miridae) feeding on small cotton floral buds. J Entomol Sci 35:187–195

    Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological genomics of plant–insect interactions: from gene to community. Plant Physiol 146:812–817

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Koiwa H, Salzman RA, Shade RE, Ahn JE (2003) Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol 12(2):135–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Carl Bergman at the Complex Carbohydrate Research Center for providing the A. niger PG II wild type and D202N samples. Thanks to Sandy Briesacher for providing us with L. hesperus eggs from her colony at the University of Missouri, Columbia. This work was supported by University of California Institute for Mexico and the United States, National Council of Science and Technology (CONACyT), University of California Davis (Plant Sciences Departmental Graduate Research Award and Jastro Shields Award), Cotton Incorporated and the California Cotton State Support Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Labavitch.

Additional information

Handling editor: Henryk Czosnek

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (DOC 36 kb)

MOESM2 [INSERT CAPTION HERE] (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Paz Celorio-Mancera, M., Allen, M.L., Powell, A.L. et al. Polygalacturonase causes lygus-like damage on plants: cloning and identification of western tarnished plant bug (Lygus hesperus) polygalacturonases secreted during feeding. Arthropod-Plant Interactions 2, 215–225 (2008). https://doi.org/10.1007/s11829-008-9050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-008-9050-7

Keywords

Navigation