Skip to main content
Log in

Signs of sympathetic dominance in sleep and wake based on spectral analysis of heart rate variability in children with obstructive sleep apnea

A meta-analysis

Zeichen der Sympathikusdominanz beim Schlafen und Wachen auf der Basis einer Spektralanalyse der Herzfrequenzvariabilität bei Kindern mit obstruktiver Schlafapnoe

Eine Metaanalyse

  • Übersichten
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Abstract

Background

The low- to high-frequency components ratio (LF/HF) of heart rate variability reflects the balance between sympathetic and parasympathetic activity. The autonomic response in individuals with obstructive sleep apnea (OSA) may lead to sympathetic activation demonstrated by an increase in the LF/HF ratio. Studies examining autonomic function during sleep and wake in children with OSA are relatively scarce.

Aim

A meta-analysis of the relevant available publications.

Methods

A MEDLINE search from 2000 through 2013 at PubMed (NLM) was performed. A search for the index terms (“sleep disordered breathing” OR “obstructive sleep apnea”) AND “heart rate” in all fields was done. Studies that included comparisons between children with and without diagnosed OSA were included into the analysis. Types of “outcome measures” were the values of the LF/HF indices in different states of the sleep–wake cycle.

Results

Four studies met the inclusion criteria. A total of 518 control children and 272 children with different degrees of OSA whose mean age ranged between 4.2 and 9.8 years were reported in the studies. Large inconsistencies concerning the effect sizes across publications were found. Meta-regression revealed a statistically significant association between calculated values of the effect sizes and the reported mean values of the apnea–hypopnea indices in the OSA groups (intercept: − 0.11826, regression coefficient: 0.01667, p = 0.048).

Conclusion

Power analysis of heart rate variability in children with OSA may help to provide further information regarding neural control mechanisms that are altered in OSA. The LF/HF index may serve as an indicator of OSA severity and as a possible marker for risk stratification in children with OSA.

Zusammenfassung

Hintergrund

Das Verhältnis der Niedrig- zu den Hochfrequenzkomponenten („low frequency“/„high frequency“, LF/HF) der Herzfrequenzvariabilität spiegelt das Gleichgewicht zwischen Sympathikus- und Parasympathikusaktivität wider. Die autonome Reaktion bei Personen mit obstruktiver Schlafapnoe (OSA) kann zur Sympathikusaktivierung führen, was sich an einem Anstieg des LF-HF-Quotienten zeigt. Studien zur autonomen Funktion im Schlafen und Wachen bei Kindern mit OSA sind relativ selten.

Ziel

Ziel war eine Metaanalyse der relevanten verfügbaren Publikationen.

Methoden

Eine Suche in MEDLINE von 2000 bis einschließlich 2013 wurde mittels PubMed (NLM, National Library of Medicine) durchgeführt. Dabei erfolgte die Suche nach folgenden Indexbegriffen: „sleep disordered breathing“ OR „obstructive sleep apnea“ und in sämtlichen Feldern: AND „heart rate“. Studien mit Vergleichen zwischen Kindern mit und ohne Diagnose einer OSA wurden in die Auswertung aufgenommen. Als Endpunktparameter waren die Werte der LF-HF-Quotienten in verschiedenen Stadien des Schlaf-Wach-Zyklus maßgeblich.

Ergebnisse

Die Einschlusskriterien wurden von 4 Studien erfüllt. In den Studien wurde über 518 Kinder als Kontrollen und 272 Kinder mit verschiedenen Graden der OSA berichtet, das Alter lag zwischen 4,2 und 9,8 Jahren. Es wurde erhebliche Inkonsistenzen in Bezug auf die Effektstärken bei den Publikationen festgestellt. Die Metaregression ergab einen statistisch signifikanten Zusammenhang zwischen den berechneten Werten der Effektstärken und den dokumentierten Mittelwerten der Apnoe-Hypopnoe-Indizes in der OSA-Gruppe (Intercept: − 0,11826; Regressionskoeffizient: 0,01667; p = 0,048).

Schlussfolgerung

Die Power-Spektrum-Analyse der Herzfrequenzvariabilität bei Kindern mit OSA kann dazu beitragen, weitere Informationen zu neuralen Kontrollmechanismen zu liefern, die bei OSA verändert sind. Der LF-HF-Quotient dient möglicherweise als Indikator des Schweregrads der OSA und als möglicher Marker zur Risikostratifizierung bei Kindern mit OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Academy of Pediatrics (2002) Clinical practice guideline: diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 109:704–712

    Article  Google Scholar 

  2. American Thoracic Society (1996) Standards and indications for cardiopulmonary sleep studies in children. Am J Respir Crit Care Med 153:866–878

    Article  Google Scholar 

  3. Anonymous (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065

    Article  Google Scholar 

  4. Baharav A, Kotagal S, Gibbons V et al (1995) Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology 45:1183–1187

    Article  PubMed  CAS  Google Scholar 

  5. Baharav A, Kotagal S, Rubin BK et al (1999) Autonomic cardiovascular control in children with obstructive sleep apnea. Clin Auton Res 9:345–351

    Article  PubMed  CAS  Google Scholar 

  6. Berry RB (2012) Fundamentals of sleep medicine. Elsevier, Philadelphia

  7. Bonnet MH, Arand DL (1997) Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol 102:390–396

    Article  PubMed  CAS  Google Scholar 

  8. Borenstein M, Hedges L, Higgins J, Rothstein H (2005) Comprehensive meta-analysis version 2. Biostat, Englewood

  9. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester

  10. Busek P, Vankova J, Opavsky J et al (2005) Spectral analysis of the heart rate variability in sleep. Physiol Res 54:369–376

    PubMed  CAS  Google Scholar 

  11. Carlson JT, Hedner J, Elam M et al (1993) Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 103:1763–1768

    Article  PubMed  CAS  Google Scholar 

  12. Cohen BH, Lea RB (2004) Essentials of statistics for the social and behavioral sciences. Wiley, Hoboken

  13. Guilleminault C, Connolly S, Winkle R et al (1984) Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 1:126–131

    Article  PubMed  CAS  Google Scholar 

  14. Gula LJ, Krahn AD, Skanes A et al (2003) Heart rate variability in obstructive sleep apnea: a prospective study and frequency domain analysis. Ann Noninvasive Electrocardiol 8:144–149

    Article  PubMed  Google Scholar 

  15. Jo JA, Blasi A, Valladares E et al (2005) Determinants of heart rate variability in obstructive sleep apnea syndrome during wakefulness and sleep. Am J Physiol Heart Circ Physiol 288:H1103–H1112

    Article  PubMed  CAS  Google Scholar 

  16. Kesek M, Franklin KA, Sahlin C, Lindberg E (2009) Heart rate variability during sleep and sleep apnoea in a population based study of 387 women. Clin Physiol Funct Imaging 29:309–315

    Article  PubMed  Google Scholar 

  17. Khoo MC, Kim TS, Berry RB (1999) Spectral indices of cardiac autonomic function in obstructive sleep apnea. Sleep 22:443–451

    PubMed  CAS  Google Scholar 

  18. Lanfranchi PA, Somers VK (2011) Cardiovascular physiology: autonomic control in health and in sleep disorders. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 226–236

  19. Liao D, Li X, Vgontzas AN et al (2010) Sleep-disordered breathing in children is associated with impairment of sleep stage-specific shift of cardiac autonomic modulation. J Sleep Res 19:358–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Malliani A (2005) Heart rate variability: from bench to bedside. Eur J Intern Med 16:12–20

    Article  PubMed  Google Scholar 

  21. McNicholas WT, Bonsigore MR, Management Committee of ECAB (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J29:156–178

    Google Scholar 

  22. Muzumdar HV, Sin S, Nikova M et al (2011) Changes in heart rate variability after adenotonsillectomy in children with obstructive sleep apnea. Chest 139:1050–1059

    Article  PubMed  Google Scholar 

  23. Narkiewicz K, Montano N, Cogliati C et al (1998) Altered cardiovascular variability in obstructive sleep apnea. Circulation 98:1071–1077

    Article  PubMed  CAS  Google Scholar 

  24. Narkiewicz K, Somers VK (2001) Cardiovascular variability characteristics in obstructive sleep apnea. Auton Neurosci 90:89–94

    Article  PubMed  CAS  Google Scholar 

  25. Narkiewicz K, Somers VK (2003) Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 177:385–390

    Article  PubMed  CAS  Google Scholar 

  26. Nisbet LC, Yiallourou SR, Nixon GM et al (2013) Nocturnal autonomic function in preschool children with sleep-disordered breathing. Sleep Med 14:1310–1316

    Article  PubMed  Google Scholar 

  27. Parish JM, Somers VK (2004) Obstructive sleep apnea and cardiovascular disease. Mayo Clin Proc 79:1036–1046

    Article  PubMed  Google Scholar 

  28. Park DH, Shin CJ, Hong SC et al (2008) Correlation between the severity of obstructive sleep apnea and heart rate variability indices. J Korean Med Sci 23:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  29. Penzel T (2003) Is heart rate variability the simple solution to diagnose sleep apnoea? Eur Respir J 22:870–871

    Article  PubMed  CAS  Google Scholar 

  30. Penzel T, Glos M, Schobel C et al (2013) Estimating sleep disordered breathing based on heart rate analysis. Conf Proc IEEE Eng Med Biol Soc 2013:6571–6574

    PubMed  Google Scholar 

  31. Pumprla J, Howorka K, Groves D et al (2002) Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol 84:1–14

    Article  PubMed  Google Scholar 

  32. Smietanowski M, Szelenberger W, Trzebski A (2006) Nonlinear dynamics of the cardiovascular parameters in sleep and sleep apnea. In memory of Alberto Malliani (1935–2006)—a brave heart and beautiful mind. J Physiol Pharmacol 57 Suppl 11:55–68

    Google Scholar 

  33. Smith RP, Veale D, Pepin JL, Levy PA (1998) Obstructive sleep apnoea and the autonomic nervous system. Sleep Med Rev 2:69–92

    Article  PubMed  CAS  Google Scholar 

  34. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Somers VK, White DP, Amin R et al (2008) Sleep apnea and cardiovascular disease. Circulation 118:1080–1111

    Article  PubMed  Google Scholar 

  36. Spruyt K (2012) Pediatric sleep-disordered breathing: criteria and spectrum of disease. In: Kheirandish-Gozal L, Gozal D (eds) Sleep disordered breathing in children: a comprehensive clinical guide to evaluation and treatment. Humana Press, New York, pp 245–260

  37. Vanninen E, Tuunainen A, Kansanen M et al (1996) Cardiac sympathovagal balance during sleep apnea episodes. Clin Physiol 16:209–216

    Article  PubMed  CAS  Google Scholar 

  38. Vaughn BV, Quint SR, Messenheimer JA, Robertson KR (1995) Heart period variability in sleep. Electroencephalography and clinical neurophysiology 94:155–162

    Article  PubMed  CAS  Google Scholar 

  39. Verrier RL, Harper RM (2011) Cardiovascular physiology: central and autonomic regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 215–225

  40. Walter LM, Nixon GM, Davey MJ et al (2013) Autonomic dysfunction in children with sleep disordered breathing. Sleep Breath 17:605–613

    Article  PubMed  Google Scholar 

  41. Wang W, Tretriluxana S, Redline S et al (2008) Association of cardiac autonomic function measures with severity of sleep-disordered breathing in a community-based sample. J Sleep Res 17:251–262

    Article  PubMed  PubMed Central  Google Scholar 

  42. Weller D, Paditz E, Rüdiger H et al (2006) Veränderung der Herzfrequenzvariabilität, der Blutdruckvariabilität und der Baroreflexsensitivität tagsüber und im Schlaf bei Kindern mit obstruktivem Schlafapnoesyndrom. Somnologie 10:130–137

    Article  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. I.A. Kelmanson states that there are no conflicts of interest. This manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.A. Kelmanson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelmanson, I. Signs of sympathetic dominance in sleep and wake based on spectral analysis of heart rate variability in children with obstructive sleep apnea. Somnologie 18, 194–201 (2014). https://doi.org/10.1007/s11818-014-0672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-014-0672-y

Keywords

Schlüsselwörter

Navigation