Skip to main content
Log in

Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Reconstruction of gene co-expression networks is a powerful tool for better understanding of gene function, biological processes, and complex disease mechanisms. In essence, co-expression network analysis has been widely used for understanding which genes are highly co-expressed through special biological processes or differentially expressed in various conditions. Development of high-throughput experiments has provided a large amount of genomic and transcriptomic data for model and non-model organisms. The availability of genome-wide expression data has led to the development of in silico procedures for reconstruction of gene co-expression networks. Gene co-expression networks predict unknown genes’ functions; moreover, it has been successfully applied to understand important biological processes of living organisms such as plants. In this survey, we have reviewed the algorithms, databases, and tools of gene co-expression network reconstruction, which can lead to new landscapes for further research activities. Furthermore, we explain an application of some algorithms, databases, and tools that can significantly boost our current understanding of co-expression networks in Arabidopsis thaliana as a model plant using publicly available data. The presented example shows that using co-expression networks is an efficient way to detect genes, which may involve in various critical biological processes such as defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas OA (2008) Comparisons between data clustering algorithms. Int Arab J Inf Technol 5(3):320–325

    Google Scholar 

  • Allen JD, Xie Y et al (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7(1):e29348. doi:10.1371/journal.pone.0029348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Okamura Y et al (2015) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57(1):pcv165

    Google Scholar 

  • Asai T, Tena G et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. doi:10.1038/415977a

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. doi:10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assenov Y, Ramírez F et al (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1

    Article  Google Scholar 

  • Ballouz S, Verleyen W et al (2015) Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics 31(13):2123–2130

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Belcastro V et al (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1):78

    PubMed  PubMed Central  Google Scholar 

  • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:418–429

    Google Scholar 

  • Cai J, Chen G et al (2010) ClusterViz: a Cytoscape plugin for graph clustering and visualization. School of Information Science and Engineering, Central South University, Changsha, p 1

    Google Scholar 

  • Carter SL, Brechbuhler CM et al (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250. doi:10.1093/bioinformatics/bth234

    Article  CAS  PubMed  Google Scholar 

  • Chae L, Lee I et al (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15(2):177–184. doi:10.1016/j.pbi.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  • Chavez Montes RA, Coello G et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14:97. doi:10.1186/1471-2229-14-97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen N, del Val IJ et al (2012) Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol 23(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Chen HY, Hsieh EJ et al (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New phytol 211(2):599–613. doi:10.1111/nph.13914

    Article  CAS  PubMed  Google Scholar 

  • Cheong R, Hoffmann A et al (2008) Understanding NF-κB signaling via mathematical modeling. Mol Syst Biol 4(1):192

    PubMed  PubMed Central  Google Scholar 

  • Christensen C, Thakar J et al (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. Syst Biol IET 1(2):61–77

    Article  CAS  Google Scholar 

  • Clarke C, Doolan P et al (2012) CGCDB: a web-based resource for the investigation of gene coexpression in CHO cell culture. Biotechnol Bioeng 109(6):1368–1370

    Article  CAS  PubMed  Google Scholar 

  • D’haeseleer P, Liang S et al (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726

    Article  PubMed  Google Scholar 

  • De Bodt S, Hollunder J et al (2012) CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195(3):707–720

    Article  PubMed  CAS  Google Scholar 

  • Deihimi T, Niazi A et al (2012) Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus 1:30. doi:10.1186/2193-1801-1-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimitrakopoulos GN, Maraziotis IA et al (2014) A clustering based method accelerating gene regulatory network reconstruction. In: Procedia Computer Science, vol 29, pp 1993–2002. doi:10.1016/j.procs.2014.05.183

  • Ditt RF, Kerr KF et al (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interactions MPMI 19(6):665–681. doi:10.1094/MPMI-19-0665

    Article  CAS  Google Scholar 

  • Du D, Rawat N et al (2015) Construction of citrus gene coexpression networks from microarray data using random matrix theory. Hortic Res 2:15026

    PubMed  PubMed Central  Google Scholar 

  • Emamjomeh A, Goliaei B et al (2015) Prediction of gene co-expression by quantifying heterogeneous features. Curr Bioinform 10(4):414–424

    Article  CAS  Google Scholar 

  • Faccioli P, Provero P et al (2005) From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 58(5):739–750. doi:10.1007/s11103-005-8159-7

    Article  CAS  PubMed  Google Scholar 

  • Faith JJ, Hayete B et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feltus FA, Ficklin SP et al (2013) Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Syst Biol 7(1):1

    Article  CAS  Google Scholar 

  • Fiorilli V, Catoni M et al (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184(4):975–987. doi:10.1111/j.1469-8137.2009.03031.x

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  • Floratos A, Smith K et al (2010) geWorkbench: an open source platform for integrative genomics. Bioinformatics 26(14):1779–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridborg I, Williams A et al (2004) Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. Mol Plant Microbe Interactions MPMI 17(10):1086–1094. doi:10.1094/MPMI.2004.17.10.1086

    Article  CAS  Google Scholar 

  • Frohlich H, Praveen P et al (2011) Fast and efficient dynamic nested effects models. Bioinformatics 27(2):238–244. doi:10.1093/bioinformatics/btq631

    Article  PubMed  CAS  Google Scholar 

  • Fukushima A, Nishizawa T et al (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158(4):1487–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgi FM, Del Fabbro C et al (2013) Comparative study of RNA-seq-and microarray-derived coexpression networks in Arabidopsis thaliana. Bioinformatics 29(6):717–724

    Article  CAS  PubMed  Google Scholar 

  • Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Hansen BO, Vaid N et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. doi:10.3389/fpls.2014.00394

    Article  PubMed  PubMed Central  Google Scholar 

  • He D, Liu Z-P et al (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J Mol Cell Biol 4(3):140–152

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Chen X et al (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res 41(8):e95–e96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    Article  CAS  PubMed  Google Scholar 

  • Hwang W, Cho Y-R et al (2006) A novel functional module detection algorithm for protein–protein interaction networks. Algorithms Mol Biol 1(1):1

    Article  CAS  Google Scholar 

  • Iancu OD, Kawane S et al (2012) Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597. doi:10.1093/bioinformatics/bts245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, vol 159. GMD-Forschungszentrum Informationstechnik, p 48

  • Jupiter D, Chen H et al (2009) STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinform 10(1):332

    Article  CAS  Google Scholar 

  • Khosravi P, Gazestani V et al (2015) Comparative analysis of co-expression networks reveals molecular changes during the cancer progression. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 June 2015, Toronto, Springer, pp 1481–1487

  • Kim KC, Lai Z et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371. doi:10.1105/tpc.107.055566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp B, Kaderali L (2013) Reconstruction of cellular signal transduction networks using perturbation assays and linear programming. PLoS One 8(7):e69220. doi:10.1371/journal.pone.0069220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kommadath A, Bao H et al (2014) Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genom 15(1):452

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559

    Article  CAS  Google Scholar 

  • Lee HK, Hsu AK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T-H, Kim Y-K et al (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151(1):16–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtinen S, Marsellach FX et al (2013) Stress induces remodelling of yeast interaction and co-expression networks. Mol BioSyst 9(7):1697–1707

    Article  CAS  PubMed  Google Scholar 

  • Lemay DG, Martin WF et al (2012) G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes. BMC Bioinform 13(1):253

    Article  CAS  Google Scholar 

  • Lerman JA, Hyduke DR et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wei H et al (2013) DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis. BioMed Res Int. doi:10.1155/2013/856325

    Google Scholar 

  • Liang Y-H, Cai B et al (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Hortic Res 1:14040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim CJ, Yang KA et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119(4):373–383

    Article  CAS  PubMed  Google Scholar 

  • Lin W-D, Liao Y-Y et al (2011) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. doi:10.1104/pp.110.166520

    Google Scholar 

  • Linderman GC, Patel VN et al (2011) BiC: a web server for calculating bimodality of coexpression between gene and protein networks. Bioinformatics 27(8):1174–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linderman GC, Chance MR et al (2012) MAGNET: MicroArray Gene expression and Network Evaluation Toolkit. Nucleic Acids Res 40(W1):W152–W156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z-P (2015) Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics 16(1):3–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B-H, Yu H et al (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Kleine L, Leal L et al (2013) Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Func Genom 12(5):457–467

    Article  Google Scholar 

  • Luscombe NM, Babu MM et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312. doi:10.1038/nature02782

    Article  CAS  PubMed  Google Scholar 

  • Lysenko A, Defoin-Platel M et al (2011) Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinform 12(1):203

    Article  Google Scholar 

  • Maere S, Heymans K et al (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Maffei G, Miozzi L et al (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24(3):179–186. doi:10.1007/s00572-013-0527-6

    Article  CAS  PubMed  Google Scholar 

  • Mal C, Aftabudddin M et al (2014) No3CoGP: non-conserved and conserved coexpressed gene pairs. BMC Res Notes 7(1):886

    Article  PubMed  PubMed Central  Google Scholar 

  • Manfield IW, Jen C-H et al (2006) Arabidopsis co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34(suppl 2):W504–W509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Van Hemert JL et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinform 10(1):346

    Article  CAS  Google Scholar 

  • Marbach D, Costello JC et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin AA, Nemenman I et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7

    Article  CAS  Google Scholar 

  • Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinform 8(Suppl 6):S5. doi:10.1186/1471-2105-8-S6-S5

    Article  CAS  Google Scholar 

  • Mentzen WI, Wurtele ES (2008) Regulon organization of Arabidopsis. BMC Plant Biol 8(1):99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalopoulos I, Pavlopoulos GA et al (2012) Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes. BMC Res Notes 5(1):265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Uehara-Yamaguchi Y et al (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52(5):785–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molendijk AJ, Ruperti B et al (2008) A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53(6):909–923. doi:10.1111/j.1365-313X.2007.03384.x

    Article  CAS  PubMed  Google Scholar 

  • Montojo J, Zuberi K et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153

    PubMed  PubMed Central  Google Scholar 

  • Movahedi S, Van Bel M et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798

    Article  CAS  PubMed  Google Scholar 

  • Mutwil M, Øbro J et al (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36(suppl 2):W320–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutwil M, Usadel B et al (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152(1):29–43. doi:10.1104/pp.109.145318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CL, Robson D et al (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6(13):R114. doi:10.1186/gb-2005-6-13-r114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nepusz T, Yu H et al (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472. doi:10.1038/nmeth.1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netotea S, Sundell D et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom 15(1):106

    Article  Google Scholar 

  • Obayashi T, Kinoshita K (2010) COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res 39:D1016–D1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obayashi T, Kinoshita K et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35(suppl 1):D863–D869

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S et al (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res 36(suppl 1):D77–D82

    CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(suppl 1):D987–D991

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Nishida K et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obayashi T, Okamura Y et al (2013) COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41(D1):D1014–D1020

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Okamura Y et al (2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata Y, Suzuki H et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26(9):1267–1268

    Article  CAS  PubMed  Google Scholar 

  • Oh IS, Park AR et al (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi:10.1105/tpc.105.034819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura Y, Aoki Y et al (2014) COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. Nucleic Acids Res 43:D82–D86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Pylatuik JD et al (2004) Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining. J Bioinform Comput Biol 2(04):639–655

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Long F et al (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  • Prifti E, Zucker J-D et al (2010) Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics 26(24):3083–3089

    Article  CAS  PubMed  Google Scholar 

  • Proost S, Mutwil M (2016) Tools of the trade: studying molecular networks in plants. Curr Opin Plant Biol 30:143–150. doi:10.1016/j.pbi.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  • Reshef DN, Reshef YA et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverter A, Chan EK (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21):2491–2497

    Article  CAS  PubMed  Google Scholar 

  • Richard H, Schulz MH et al (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38(10):e112–e113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16(9):1139–1149. doi:10.1101/gad.222702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotival M, Petretto E (2014) Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Func Genom 13(1):66–78

    Article  Google Scholar 

  • Roy S, Bhattacharyya DK et al (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform 15(Suppl 7):S10

    Article  Google Scholar 

  • Ruan J, Dean AK et al (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4:8. doi:10.1186/1752-0509-4-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan PT, Ó’Maoiléidigh DS et al (2015) Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom 16(1):488

    Article  CAS  Google Scholar 

  • Sait K (2009) The prediction of local modular structures in a co-expression network based on gene expression data sets. Genome Inform 23:117–127

    Google Scholar 

  • Sarkar NK, Kim Y-K et al (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84(1–2):125–143

    Article  CAS  PubMed  Google Scholar 

  • Serin EA, Nijveen H et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. doi:10.3389/fpls.2016.00444

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner J, Kotliarov Y et al (2011) Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinform 12(1):286

    Article  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420

    Book  Google Scholar 

  • Song L, Langfelder P et al (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328. doi:10.1186/1471-2105-13-328

    Article  CAS  Google Scholar 

  • Srinivasasainagendra V, Page GP et al (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhauser D, Usadel B et al (2004) CSB. DB: a comprehensive systems-biology database. Bioinformatics 20(18):3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Steuer R, Kurths J et al (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl 2):S231–S240

    Article  PubMed  Google Scholar 

  • Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi:10.1126/science.1087447

    Article  CAS  PubMed  Google Scholar 

  • Troyanskaya OG, Dolinski K et al (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100(14):8348–8353. doi:10.1073/pnas.0832373100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaparas P, Marino-Ramirez L et al (2006) Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol Biol 6:70. doi:10.1186/1471-2148-6-70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzfadia O, Diels T et al (2015) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci. doi:10.3389/fpls.2015.01194

    PubMed  Google Scholar 

  • Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Obayashi T et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. doi:10.1111/j.1365-3040.2009.02040.x

    Article  CAS  PubMed  Google Scholar 

  • van Dam S, Craig T et al (2015) GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43(D1):D1124–D1132

    Article  PubMed  Google Scholar 

  • van Delft J, Gaj S et al (2012) RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo [a] pyrene. Toxicol Sci 130(2):427–439

    Article  PubMed  CAS  Google Scholar 

  • van Noort V, Snel B et al (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5(3):280–284. doi:10.1038/sj.embor.7400090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362:53–61

    Article  PubMed  Google Scholar 

  • Wang S, Yin Y et al (2012a) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12(1):138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Joseph SJ et al (2012b) SNPxGE2: a database for human SNP–coexpression associations. Bioinformatics 28(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Qi H et al (2014) ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res 43:D1133–D1139

    Article  PubMed  PubMed Central  Google Scholar 

  • Willmann R, Lajunen HM et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108(49):19824–19829. doi:10.1073/pnas.1112862108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf DM, Lenburg ME et al (2014) Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One 9(2):e88309. doi:10.1371/journal.pone.0088309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfe CJ, Kohane IS et al (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform 6:227. doi:10.1186/1471-2105-6-227

    Article  CAS  Google Scholar 

  • Wong DC, Sweetman C et al (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genom 14(1):882

    Article  CAS  Google Scholar 

  • Wu C-C, Huang H-C et al (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18):3691–3693

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Lu X et al (2011) Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci Chin Life Sci 54(1):65–67

    Article  CAS  Google Scholar 

  • Xiong J, Lu Y et al (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database 2013:bat008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yalamanchili HK, Li Z et al (2014) SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples. Nucleic Acids Res 42(15):e121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yim WC, Yu Y et al (2013) PLANEX: the plant co-expression database. BMC Plant Biol 13(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu S et al (2012) Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7(5):e33748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu W et al (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-L, Pan J-S et al (2015) Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 105(5):296–303

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Xue C et al (2015) Identification of crucial genes in intracranial aneurysm based on weighted gene coexpression network analysis. Cancer Gene Ther 22(5):238–245

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Kao M-CJ et al (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci 99(20):12783–12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Gerstein M et al (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024. doi:10.1101/gad.1528707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

PK is supported by School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Zahiri or Pegah Khosravi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamjomeh, A., Saboori Robat, E., Zahiri, J. et al. Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data. Plant Biotechnol Rep 11, 71–86 (2017). https://doi.org/10.1007/s11816-017-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0433-z

Keywords

Navigation