Skip to main content
Log in

Use of membrane separation in enzymatic hydrolysis of waste paper

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A three-stage process containing phosphoric acid pretreatment, enzymatic hydrolysis, and membrane filtration was performed on waste paper as a lignocellulosic material. In the first two stages, the effect of phosphoric acid concentration, enzyme loading, hydrolysis time, and substrate concentration on the amount of products was investigated. At the third stage using a proper membrane, the effect of substrate concentration and transmembrane pressure (TMP) on yield of the reducing sugars was studied. The novelty of the present study was to demonstrate the application of ultrafiltration membrane on the enzymatic hydrolysis process of waste paper. The reducing sugars concentration was determined by using the 3,5-dinitrosalicylic acid (DNS) reagent method. According to the results, a value of 0.5% was determined as the optimum concentration for phosphoric acid in the pretreatment stage. The reducing sugars yield was obtained as 67.4% in this concentration. Moreover, for the enzymatic hydrolysis of waste paper, the suitable amounts of cellulase enzyme loading and hydrolysis time were determined as 50 mg/g substrate and 48 h, respectively. In the filtration stage, increase of substrate concentration and decrease of TMP resulted in higher rejection of the reducing sugars. The experimental results revealed that the highest rejection was 19.2% at TMP of 3 bar and substrate concentration of 100 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kumar, D. M. Barrett, M. J. Delwiche and P. Stroeve, Ind. Eng. Chem. Res., 48, 3713 (2009).

    Article  CAS  Google Scholar 

  2. V. Brummer, T. Jurena, V. Hlavacek, J. Omelkova, L. Bebar, P. Gabriel and P. Stehlik, Bioresour. Technol., 152, 543 (2014).

    Article  CAS  Google Scholar 

  3. M. Dziril, H. Grib, H. Laribi-Habchi, N. Drouiche, N. Abdi, H. Lounici, A. Pauss and N. Mameri, J. Ind. Eng. Chem., 26, 396 (2015).

    Article  CAS  Google Scholar 

  4. E. O. Jones and J. M. Lee, Biotechnol. Bioeng., 31, 35 (1988).

    Article  CAS  Google Scholar 

  5. K. Belafi-Bako, A. Koutinas, N. Nemestothy, L. Gubicza and C. Webb, Enzyme Microb. Technol., 38, 155 (2006).

    Article  CAS  Google Scholar 

  6. S. Haghighi Mood, A. H. Golfeshan, M. Tabatabaei, G. Salehi Jouzani, G. H. Najafi, M. Gholami and M. Ardjmand, Renew. Sustainable Energy Rev., 27, 77 (2013).

    Article  CAS  Google Scholar 

  7. J. W. Kim and G. Mazza, Ind. Crops Prod., 28, 346 (2008).

    Article  CAS  Google Scholar 

  8. W. Wang, L. Kang, H. Wei, R. Arona and Y. Y. Lee, Appl. Biochem. Biotechnol., 164, 1139 (2011).

    Article  CAS  Google Scholar 

  9. Y. Sun and J. Cheng, Bioresour. Technol., 83, 1 (2002).

    Article  CAS  Google Scholar 

  10. Q. Gan, S. J. Allen and G. Taylor, Biochem. Eng. J., 12, 223 (2002).

    Article  CAS  Google Scholar 

  11. H. Krawczyk, P. Oinonen and A.-S. Jonsson, Chem. Eng. J., 225, 292 (2013).

    Article  CAS  Google Scholar 

  12. P. Andric, A. S. Meyer, P. A. Jensen and K. Dam-Johansen, Biotechnol. Adv., 28, 407 (2010).

    Article  CAS  Google Scholar 

  13. N. Ghaffour, M. W. Naceur, N. Drouiche and H. Mahmoudi, Desalination Water Treat., 5, 159 (2009).

    Article  CAS  Google Scholar 

  14. S.-G. Lee and H.-S. Kim, Biotechnol. Bioeng., 42, 737 (1993).

    Article  CAS  Google Scholar 

  15. C. Abels, K. Thimm, H. Wulfhorst, A. C. Spiess and M. Wessling, Bioresour. Technol., 149, 58 (2013).

    Article  CAS  Google Scholar 

  16. P. Lozano, B. Bernal, A. G. Jara and M.-P. Belleville, Bioresour. Technol., 151, 159 (2014).

    Article  CAS  Google Scholar 

  17. K. H. Chu and X. Feng, Process Saf. Environ. Prot., 91, 123 (2013).

    Article  CAS  Google Scholar 

  18. G. L. Miller, Anal. Chem., 31, 426 (1959).

    Article  CAS  Google Scholar 

  19. T. K. Ghose, Pure Appl. Chem., 59, 257 (1987).

    CAS  Google Scholar 

  20. M. A. Haj Asgarkhani, S. M. Mousavi and E. Saljoughi, Korean J. Chem. Eng., 30, 1819 (2013).

    Article  Google Scholar 

  21. J. M. Romero Garcia, F. G. Acien Fernandez and J. M. Fernandez Sevilla, Bioresour. Technol., 112, 164 (2012).

    Article  CAS  Google Scholar 

  22. E. Y. Vlasenko, H. Ding, J. M. Labavitch and S. P. Shoemaker, Bioresour. Technol., 59, 109 (1997).

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y.-Y. Liu, J.-L. Xu, Z.-H. Yuan, W. Qi, X.-S. Zhuang and M.-C. He, BioResources, 7, 345 (2012).

    CAS  Google Scholar 

  24. D. J. Gregg and J. N. Saddler, Biotechnol. Bioeng., 51, 375 (1996).

    Article  CAS  Google Scholar 

  25. M. S. Benhabiles, N. Abdi, N. Drouiche, H. Lounici, A. Pauss, M. F. A. Goosen and N. Mameri, Mater. Sci. Eng. C, 32, 922 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahmoud Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, N.M., Mousavi, S.M., Bahreini, M. et al. Use of membrane separation in enzymatic hydrolysis of waste paper. Korean J. Chem. Eng. 34, 768–772 (2017). https://doi.org/10.1007/s11814-016-0312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0312-2

Keywords

Navigation