Skip to main content
Log in

Adsorption and kinetics of elemental mercury vapor on activated carbons impregnated with potassium iodide, hydrogen chloride, and sulfur

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Coal combustion emits large amounts of elemental mercury that cannot be captured by air pollution control devices such as flue gas desulfurization because of its insolubility. Therefore, technological advances are necessary for capturing elemental mercury. We conducted various tests on adsorption of elemental mercury using KI-, HCl-, and S-impregnated activated carbons, which were compared with virgin activated carbon. Tests with virgin activated carbon revealed that the optimal adsorption temperature for capturing elemental mercury was 363 K. The adsorption efficiency for elemental mercury was nearly 100% using activated carbon impregnated with 1% and 5% KI and 1%, 5%, and 10% HCl. Through kinetic analyses of the impregnated activated carbons, the optimal equilibrium adsorption capacities of KI-, HCl-, and S-impregnated activated carbons for mercury were determined to be 333.3, 333.3, and 256.4mg/g, respectively, by using a pseudo second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Pirrone and R. Mason, Mercury fate and transport in the global atmosphere (2009).

    Google Scholar 

  2. US Environmental Protection Agency, Mercury study report to congress (1997).

    Google Scholar 

  3. US Environmental Protection Agency, Control mercury emissions from coal fired electric utility boilers (2005).

    Google Scholar 

  4. US Environmental Protection Agency, Preliminary estimates of performance and cost of mercury emission control technology applications on electric utility boilers (2004).

    Google Scholar 

  5. J. H. Pavlish, E. A. Sondreal, M.D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal and S. A. Benson, Fuel Processing Technol., 82, 89 (2003).

    Article  CAS  Google Scholar 

  6. S. J. Lee, Y.C. Seo, J. Jurng and T.G. Lee, Atmospheric Environ., 38, 4887 (2004).

    Article  CAS  Google Scholar 

  7. J. Jurng, T.G. Lee, G.W. Lee, S. J. Lee, B.H. Kim and J. Seier, Chemosphere, 47, 907 (2002).

    Article  CAS  Google Scholar 

  8. A. Saha, Energy Fuels, 28, 4021 (2014).

    Article  CAS  Google Scholar 

  9. H.Y. Pan, R.G. Minet, S.W. Benson and T.T. Tsotsis, Ind. Eng. Chem. Res., 33, 2996 (1994).

    Article  CAS  Google Scholar 

  10. W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang and C. Chen, Ind. Eng. Chem. Res., 53, 582 (2014).

    Article  CAS  Google Scholar 

  11. J. Cai, B. Shen, Z. Li, J. Chen and C. He, Chem. Eng. J., 241, 19 (2014).

    Article  CAS  Google Scholar 

  12. B. Shen, J. Chen and S. Yue, Micropor. Mesopor. Mater., 203, 216 (2015).

    Article  CAS  Google Scholar 

  13. H.C. His, M. J. Rood, M.R. Abadi, S. Chen and R. Chang, J. Environ. Eng., 128, 1080 (2002).

    Article  Google Scholar 

  14. Y. S. Ho and G. McKAY, Trans Institution Chem. Engineers, 76, Part B (1998).

    Google Scholar 

  15. K.V. Kumar, J. Hazard. Mater., 137, 1538 (2006).

    Article  CAS  Google Scholar 

  16. G. Skodras, I. Diamantopoulou, G. Pantoleontos and G. P. Sakellaropoulos, Materials, 158, 1 (2009).

    Google Scholar 

  17. N. Asasian, T. Kaghazchi, A. Faramarzi, A. H. Siboni, R.A. Kesheh, M. Kavand and S-.A. Int. J. Environ. Sci. Technol., 45, 1588 (2014).

    CAS  Google Scholar 

  18. F. Raji and M. Pakizeh, Appl. Surf. Sci., 301, 568 (2014).

    Article  CAS  Google Scholar 

  19. L. Cui, X. Guo, Q. Wei, Y. Wang, L. Gao, L. Yan, T. Yan and B. Du, J. Colloid Interface Sci., 439, 112 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Chil Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, HN., Back, SK., Sung, JH. et al. Adsorption and kinetics of elemental mercury vapor on activated carbons impregnated with potassium iodide, hydrogen chloride, and sulfur. Korean J. Chem. Eng. 34, 806–813 (2017). https://doi.org/10.1007/s11814-016-0305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0305-1

Keywords

Navigation