Skip to main content
Log in

Modeling of low viscosity oil-water annular flow in horizontal and slightly inclined pipes: Experiments and CFD simulations

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To characterize the effect of pipe inclination, low viscosity, flow rate and inlet water cut on annular flow pattern, a low viscosity oil-water two-phase annular flow in horizontal and slightly inclined (+1°, +3° and +5°) pipes with diameter of 20 mm has been experimentally investigated. A modified VOF model based on the CFD software package FLUENT was used to predict the in-situ oil fraction and pressure drop. The experimental data indicate that annular flow appears at a medium-high water cut. The slip ratio increases with flow rate increase but decreases with increasing water cut. The changes are more significant as the degree of inclination increases. Pressure drop is strongly dependent on flow rate, as it increases rapidly as inlet flow rate increase. Good agreement between the experimental data and calculated results of slip ratio and pressure drop was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Cox, University of Texas at Austin (1985).

    Google Scholar 

  2. N. Brauner and D. Moalem Maron, Int. J. Multiphase Flow, 18. 123 (1992).

    Article  CAS  Google Scholar 

  3. J. L. Trallero, in Discipline of Petroleum Engineering, University of Tulsa, 176 (1995).

    Google Scholar 

  4. A. Beretta, et al., Int. Commun. Heat Mass Transf., 24, 223 (1997).

    Article  CAS  Google Scholar 

  5. P. Angeli and G. F. Hewitt, Int. J. Multiphase Flow, 26, 1117 (2000).

    Article  CAS  Google Scholar 

  6. G. Elseth, Norwegian University of Science and Technology, 270 (2001).

    Google Scholar 

  7. D. R. Chakrabarti, G. Das and S. Ray, Chem. Eng. Technol., 28, 1003 (2005).

    Article  CAS  Google Scholar 

  8. T. Al-Wahaibi, et al., J. Petroleum Sci. Eng., 122, 266 (2014).

    Article  CAS  Google Scholar 

  9. O. M. H. Rodriguez and R. V. A. Oliemans, Int. J. Multiphase Flow, 32, 323 (2006).

    Article  CAS  Google Scholar 

  10. J. Y. L. Lum, T. Al-Wahaibi and P. Angeli, Int. J. Multiphase Flow, 32, 413 (2006).

    Article  CAS  Google Scholar 

  11. W. A. S. Kumara, B. M. Halvorsen and M. C. Melaaen, Chem. Eng. Sci., 65, 4332 (2010).

    Article  CAS  Google Scholar 

  12. G. Ooms, Appl. Sci. Res., 26, 147 (1972).

    Article  Google Scholar 

  13. R. V. A. Oliemans and G. Ooms, Core-Annular Flow of Oil and Water through a Pipeline, in Multiphase Science and Technology, G. F. Hewitt, J. M. Delhaye and N. Zuber, Ed., Springer Berlin Heidelberg, 427 (1986).

  14. M. S. Arney, et al., Int. J. Multiphase Flow, 19, 1061 (1993).

    Article  CAS  Google Scholar 

  15. R. Bai, K. Kelkar and D. D. Joseph, J. Fluid Mechanics, 327, 1 (1996).

    Article  CAS  Google Scholar 

  16. D. D. Joseph, et al., Annual Review of Fluid Mechanics, 29, 65 (1997).

    Article  Google Scholar 

  17. D. Barnea, Int. J. Multiphase Flow, 12, 733 (1986).

    Article  CAS  Google Scholar 

  18. D. Barnea and Y. Taitel, Chem. Eng. Sci., 44, 325 (1989).

    Article  CAS  Google Scholar 

  19. N. Brauner, Int. J. Multiphase Flow, 17, 59 (1991).

    Article  CAS  Google Scholar 

  20. A. C. Bannwart, J. Petroleum Sci. Eng., 32, 127 (2001).

    Article  CAS  Google Scholar 

  21. O. M. H. Rodriguez and A. C. Bannwart, AIChE J., 54, 20 (2008).

    Article  CAS  Google Scholar 

  22. O. M. H. Rodriguez, A. C. Bannwart and C. H. M. de Carvalho, J. Petroleum Sci. Eng., 65, 67 (2009).

    Article  CAS  Google Scholar 

  23. D. Strazza, et al., Chem. Eng. Sci., 66, 2853 (2011).

    Article  CAS  Google Scholar 

  24. T. Ko, et al., Int. J. Multiphase Flow, 28, 1205 (2002).

    Article  CAS  Google Scholar 

  25. S. Ghosh, G. Das and P. K. Das, Chem. Eng. Processing: Process Intensification, 49, 1222 (2010).

    Article  CAS  Google Scholar 

  26. V. V. R. Kaushik, et al., J. Petroleum Sci. Eng., 86-87, 153 (2012).

    Article  CAS  Google Scholar 

  27. J. O. McCaslin and O. Desjardins, Int. J. Multiphase Flow, 67, 88 (2014).

    Article  CAS  Google Scholar 

  28. S. Tripathi, et al., Procedia IUTAM, 15, 278 (2015).

    Article  Google Scholar 

  29. S. Ghosh, G. Das and P. K. Das, Chem. Eng. Res. Design, 89, 2244 (2011).

    Article  CAS  Google Scholar 

  30. F. Jiang, et al., Ind. Eng. Chem. Res., 53, 8235 (2014).

    Article  CAS  Google Scholar 

  31. S. Ghorai and K. D. P. Nigam, Chem. Eng. Processing: Process Intensification, 45, 55 (2006).

    Article  CAS  Google Scholar 

  32. S. C. K. De Schepper, G. J. Heynderickx and G. B. Marin, Chem. Eng. J., 138, 349 (2008).

    Article  CAS  Google Scholar 

  33. J. Brackbill, D. B. Kothe and C. Zemach, J. Comput. Phys., 100, 335 (1992).

    Article  CAS  Google Scholar 

  34. M. R. Rampure, V. V. Buwa and V. V. Ranade, Can. J. Chem. Eng., 81, 692 (2003).

    Article  CAS  Google Scholar 

  35. R. M. A. Masood and A. Delgado, Chem. Eng. Sci., 108, 154 (2014).

    Article  CAS  Google Scholar 

  36. B. Grassi, D. Strazza and P. Poesio, Int. J. Multiphase Flow, 34, 950 (2008).

    Article  CAS  Google Scholar 

  37. P. Poesio, D. Strazza and G. Sotgia, Appl. Thermal Eng., 49, 41 (2012).

    Article  Google Scholar 

  38. T. S. Ng, C. J. Lawrence and G. F. Hewitt, Int. J. Multiphase Flow, 27, 1301 (2001).

    Article  CAS  Google Scholar 

  39. T. S. Ng, C. J. Lawrence and G. F. Hewitt, Chem. Eng. Res. Design, 82, 309 (2004).

    Article  CAS  Google Scholar 

  40. T. Al-Wahaibi and P. Angeli, Int. J. Multiphase Flow, 37, 930 (2011).

    Article  CAS  Google Scholar 

  41. J. Y. L. Lum, J. Lovick and P. Angeli, Can. J. Chem. Eng., 82, 303 (2004).

    Article  CAS  Google Scholar 

  42. F. Jiang, et al., Chem. Eng. Technol., 37, 659 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, YX., Zhang, HB., Xie, RH. et al. Modeling of low viscosity oil-water annular flow in horizontal and slightly inclined pipes: Experiments and CFD simulations. Korean J. Chem. Eng. 33, 2820–2829 (2016). https://doi.org/10.1007/s11814-016-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0188-1

Keywords

Navigation