Skip to main content
Log in

Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We have characterized micro-droplet generation using water immiscible hexafluorophosphate ([PF6])- and bis(trifluoromethylsulfonyl)imide ([Tf2N])-based room temperature ionic liquids (RTILs). The interfacial tension between total 7 RTILs and phosphate buffered saline (PBS) was measured using a tensiometer for the first time. PBS is one of the most commonly used buffer solutions in cell-related researches. The measured interfacial tension ranges from 8.51 to 11.62 and from 9.56 to 13.19 for [Tf2N]- and [PF6]-based RTILs, respectively. The RTILs micro-droplets were generated in a microfluidic device. The micro-droplet size and generation frequency were determined based on continuous monitoring of light transmittance at the interface in microchannel. The size of RTIL micro-droplets was inversely proportional to the increase of PBS solution flow rate and RTILs hydrophobicity, while droplet generation frequency was proportional to those changes. The measured size of RTILs droplets ranged from 0.6 to 10.5 nl, and from 1.0 to 17.1 nl for [Tf2N]- and [PF6]-based RTILs, respectively. The measured frequency of generated RTILs droplets ranged from 2.3 to 37.2 droplet/min, and from 2.7 to 17.1 droplet/min for [Tf2N]- and [PF6]-based RTILs, respectively. The capillary numbers were calculated depending on the RTILs, and ranged from 0.51×10-3 to 1.06×10-3 and from 5.00×10-3 to 8.65×10-3, for [Tf2N]- and [PF6]-based RTILs, respectively. The interfacial tension between RTILs and PBS will contribute to developing bioprocesses using immiscible RTILs. Also, the RTILs micro-droplets will enable the high-throughput monitoring of various biological and chemical reactions using RTILs as new reaction media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, S. H. Ha, N. M. Hiep, W. J. Chang and Y. M. Koo, J. Biotechnol., 133, 486 (2008).

    Article  CAS  Google Scholar 

  2. G. Yassaghi, A. Davoodnia, S. Allameh, Z.B. Atefeh and T.H. Niloofar, Bull. Korean Chem. Soc., 33, 2724 (2012).

    Article  CAS  Google Scholar 

  3. Y. H. Moon, S. M. Lee, S. H. Ha and Y. M. Koo, Korean J. Chem. Eng., 23, 247 (2006).

    Article  CAS  Google Scholar 

  4. H.V.R. Annapureddy and L. X. Dang, J. Phys. Chem. B, 117, 8555 (2013).

    Article  CAS  Google Scholar 

  5. S. H. Lee, T.T. N. Doan, S. H. Ha, W. J. Chang and Y. M. Koo, J. Molec. Catal. B: Enz., 47, 129 (2007).

    Article  CAS  Google Scholar 

  6. J. K. Lee and M. J. Kim, J. Org. Chem., 67, 6845 (2002).

    Article  CAS  Google Scholar 

  7. D. Belder, Angew. Chem. Int. Ed., 44, 3521 (2005).

    Article  CAS  Google Scholar 

  8. K. S. Krishna, Y. Li, S. Li and C. S. S.R. Kumar, Adv. Drug Deliv. Rev., 65, 1470 (2013).

    Article  CAS  Google Scholar 

  9. Y. Zhang, V. Bailey, C.M. Puleo, H. Easwaran, E. Griffiths, J.G. Herman, S. B. Baylin and T. H. Wang, Lab Chip, 9, 1059 (2009).

    Article  CAS  Google Scholar 

  10. L. Chen, L. Li, S. Reyes, D. N. Adamson and R. F. Ismagilov, Langmuir, 23, 2255 (2007).

    Article  CAS  Google Scholar 

  11. T. Nisisako, T. Torii and T. Higuchi, Chem. Eng. J., 101, 23 (2004).

    Article  CAS  Google Scholar 

  12. K. Aketagawa, H. Hirama and T. Torii, J. Mater. Sci. Chem. Eng., 1, 1 (2013).

    CAS  Google Scholar 

  13. H. Song and R. F. Ismagilov, J. Am. Chem. Soc., 125, 14613 (2003).

    Article  CAS  Google Scholar 

  14. S. L. Sjostrom, H. N. Joensson and H. A. Svahn, Lab Chip, 13, 1754 (2013).

    Article  CAS  Google Scholar 

  15. T. Thorsen, R.W. Roberts, F.H. Amold and S.R. Quake, Phys. Rev. Lett., 86, 4163 (2001).

    Article  CAS  Google Scholar 

  16. R. Dreyfus, P. Tabeling and H. Willaime, Phys. Rev. Lett., 90, 144505 (2003).

    Article  CAS  Google Scholar 

  17. C. X. Zhao, Adv. Drug Deliv. Rev., 65, 1420 (2013).

    Article  CAS  Google Scholar 

  18. F. Courtois, L.F. Olguin, G. Whyte, D. Bratton, W.T.S. Huck, C. Abell and F. Hollfelder, Chem. BioChem., 9, 439 (2008).

    CAS  Google Scholar 

  19. Z.T. Cygan, J.T. Cabral, K. L. Beers and E. J. Amis, Langmuir, 21, 3629 (2005).

    Article  CAS  Google Scholar 

  20. J. Lee, M. J. Kim and H. H. Lee, Langmuir, 22, 2090 (2006).

    Article  CAS  Google Scholar 

  21. D. D. Chatterjee, B. Hetayothin, A.R. Wheeler, D. J. King and R. L. Garrell, Lab Chip, 6, 199 (2006).

    Article  CAS  Google Scholar 

  22. A. J. de Mello, M. Habgood, N.L. Lancaster, T. Welton and R.C.R. Wootton, Lab Chip, 4, 417 (2004).

    Article  CAS  Google Scholar 

  23. N. Dossi, R. Toniolo, A. Pizzariello, E. Carrilho, E. Piccin, S. Battistion and G. Bontempelli, Lab Chip, 12, 153 (2012).

    Article  CAS  Google Scholar 

  24. T. Hoshino, K. Fujita, A. Higashi, K. Sakiyama, H. Ohno and K. Morishima, Biochem. Biophys. Res. Commun., 427, 379 (2012).

    Article  CAS  Google Scholar 

  25. C. S. Effenhauser, G. J.M. Bruln, A. Paulus and M. Ehrat, Anal. Chem., 69, 3451 (1997).

    Article  CAS  Google Scholar 

  26. J. S. Wilkes, in Ionic Liquids in Synthesis, Ed. P. Wasserscheid, T. Welton, WILEY-VCH Verlag & Co., KGaA, 1 (2002).

  27. W. J. Oldham Jr., in Ionic Liquids: Industrial Applications to Green Chemistry, Ed. R.D. Rogers, K.R. Seddon, Oxford University, Press, 188 (2003).

  28. W. Martino, J.F. de la Mora, Y. Yoshida, G. Saito and J. Wilkes, Green Chem., 8, 390 (2006).

    Article  Google Scholar 

  29. C. H. Choi, N. Prasad, N. R. Lee and C. S. Lee, Biochip J., 2, 27 (2008).

    Google Scholar 

  30. B.D. Fitchett, J. B. Rollins and J.C. Conboy, Langmuir, 21, 12179 (2005).

    Article  CAS  Google Scholar 

  31. E. Lepercq-Bost, M. L. Giorgi, A. Isambert and C. Arnaud, J. Memb. Sci., 314, 76 (2008).

    Article  CAS  Google Scholar 

  32. S. van der Graaf, M. L. J. Steegmans, R.G.M. van der Sman, C.G.P.H. Schroen, R.M. Boom, Colloids Surf., A: Phys. Eng. Aspects, 266, 106 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Jin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.W., Choi, JH., Choi, B. et al. Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension. Korean J. Chem. Eng. 33, 57–62 (2016). https://doi.org/10.1007/s11814-015-0037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0037-7

Keywords

Navigation