Skip to main content
Log in

Reliable estimation of adsorption isotherm parameters using adequate pore size distribution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The equilibrium adsorption isotherm has a crucial effect on various characteristics of the solid adsorbent (e.g., pore volume, bulk density, surface area, pore geometry). A historical paradox exists in conventional estimation of adsorption isotherm parameters. Traditionally, the total amount of adsorb material (total adsorption isotherm) has been considered equivalent to the local adsorption isotherm. This assumption is only valid when the corresponding pore size or energy distribution (PSD or ED) of the porous adsorbent can be successfully represented with the Dirac delta function. In practice, the actual PSD (or ED) is far from such assumption, and the traditional method for prediction of local adsorption isotherm parameters leads to serious errors. Up to now, the powerful combination of inverse theory and linear regularization technique has drastically failed when used for extraction of PSD from real adsorption data. For this reason, all previous researches used synthetic data because they were not able to extract proper PSD from the measured total adsorption isotherm with unrealistic parameters of local adsorption isotherm. We propose a novel approach that can successfully provide the correct values of local adsorption isotherm parameters without any a priori and unrealistic assumptions. Two distinct methods are suggested and several illustrative (synthetic and real experimental) examples are presented to clearly demonstrate the effectiveness of the newly proposed methods on computing the correct values of local adsorption isotherm parameters. The so-called Iterative and Optima methods’ impressive performances on extraction of correct PSD are validated using several experimental data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Guntuka, National University of Singapore, M.Sc. Thesis (2006).

    Google Scholar 

  2. A. Shahsavand and M. Niknam Shahrak, Colloids Surf.. A., 378, 1 (2011).

    Article  CAS  Google Scholar 

  3. A. Shahsavand and M. Niknam Shahrak, Chem. Eng. J., 171, 69 (2011).

    Article  CAS  Google Scholar 

  4. A. Malek and S. Farooq, AIChE J., 42, 11 (1996).

    Article  Google Scholar 

  5. I. Langmuir, J. Am. Chem. Soc., 38, 11 (1916).

    Google Scholar 

  6. J.H. De Boer, The Dynamical Character of Adsorption, Second Ed., Oxford University Press, London (1968).

    Google Scholar 

  7. A. L. Myers and J. M. Prausnitz, AIChE J., 11, 1 (1965).

    Article  Google Scholar 

  8. M. M. Dubinin, Chem. Rev., 60, 235 (1960).

    Article  CAS  Google Scholar 

  9. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York (1984).

    Google Scholar 

  10. K. Y. Foo and B.H. Hameed, Chem. Eng. J., 156, 2 (2010).

    Article  CAS  Google Scholar 

  11. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in FORTRAN: The art of scientific computing, Cambridge University Press (1992).

    Google Scholar 

  12. D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London (1998).

    Google Scholar 

  13. O. Solcova, L. Matejová and P. Schneider, Appl. Catal. A-Gen., 313, 167 (2006).

    Article  CAS  Google Scholar 

  14. P. H. Merz, J. Comp. Phys., 38, 64 (1980).

    Article  CAS  Google Scholar 

  15. W. A. House, M. Jaroniec, P. Brauer and P. Fink, Thin. Solid. Films, 87, 323 (1982).

    Article  CAS  Google Scholar 

  16. S. K. Bhatia, Chem. Eng. Sci., 53, 18 (1998).

    Article  Google Scholar 

  17. V.M. Gun’koa and D.D. Do, Colloid. Surface. A., 193, 71 (2001).

    Article  Google Scholar 

  18. J. Keller and R. Staudt, Gas adsorption equilibria: Experimental methods and adsorption isotherms, Springer Science Press, U.S. (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Husseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husseinzadeh, D., Shahsavand, A. Reliable estimation of adsorption isotherm parameters using adequate pore size distribution. Korean J. Chem. Eng. 32, 925–933 (2015). https://doi.org/10.1007/s11814-014-0294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0294-x

Keywords

Navigation