Skip to main content
Log in

Biosorption mechanism of Zn2+ from aqueous solution by spent substrates of pleurotus ostreatus

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To solve the problem of heavy metal pollution and agricultural wastes reclamation, spent substrate of pleurotus ostreatus (SSPO) was used as adsorbent to remove Zn2+ from aqueous solution. The biosorption of zinc ions on SSPO was studied as a function of the solution pH, temperature and initial Zn2+ concentration. The equilibrium sorption data were well represented by linear Langmuir isotherm models with R2 value of 0.9955 and non-linear Freundlich with R2 value of 0.9973. The BET surface area of SSPO can reach 51.16m2g−1. SEM-EDX and XRD revealed that (NH4)2Zn·H2O and Zn2PO4(OH) were the main compounds in metal-loaded SSPO. FTIR analysis indicated the governing functional groups such as O-H, N-H and P=O played an important role in biosorption. The desorption studies showed the reversibility of SSPO. The results indicate that SSPO is a potential adsorbent in wastewater treatment due to its great sorption capacity and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Ahmad, S. Haydar and T. A. Quraishi, Int. Biodeterior. Biodegrad., 83, 119 (2013).

    Article  CAS  Google Scholar 

  2. S. Megateli, S. Semsari and M. Couderchet, Ecotoxicol. Environ. Saf., 72, 1774 (2009).

    Article  CAS  Google Scholar 

  3. A. A. Juwarkar, S. K. Singh and A. Mudhoo, Rev. Environ. Sci. Biotechnol., 9, 215 (2010).

    Article  CAS  Google Scholar 

  4. P. S. Vankar, R. Sarswat, A. K. Dwivedi and R. S. Sahu, J. Clean. Prod., 60, 65 (2013).

    Article  CAS  Google Scholar 

  5. J. L. Wang and C. Chen, Biotechnol. Adv., 27, 195 (2009).

    Article  Google Scholar 

  6. H. N. Bhatti, R. Khalid and M. A. Hanif, Chem. Eng. J., 148, 434 (2009).

    Article  CAS  Google Scholar 

  7. A. Buasri, N. Chaiyut, K Tapang, S. Jaroensin and S. Panphrom, APCBEE Procedia, 3, 60 (2012).

    Article  CAS  Google Scholar 

  8. A. M. Abdel-Aty, N. S. Ammar, H. H. A. Ghafar amd R. K. Ali, J. Adv. Res., 4, 367 (2013).

    Article  CAS  Google Scholar 

  9. C.W. Phan and V. Sabaratnam, Appl. Microbiol. Biot., 96, 863 (2012).

    Article  CAS  Google Scholar 

  10. C. C. Tay, H. H. Liew, C.Y. Yin, S. A. Talib, S. Surif, A. A. Suhaimi and S. K. Yong, Korean J. Chem. Eng., 28, 825 (2011).

    Article  CAS  Google Scholar 

  11. M. Arshad, M. N. Zafar, S. Younis and R. Nadeem, J. Hazard. Mater., 157, 534 (2008).

    Article  CAS  Google Scholar 

  12. T. Altun and E. Pehlivan, Food Chem., 132, 697 (2012).

    Article  Google Scholar 

  13. J. Rivera-Utrilla, I. Bautista-Toledo, M. A. Ferro-García and C. Moreno-Castilla, J. Chem. Technol. Biotechnol., 76, 1209 (2001).

    Article  CAS  Google Scholar 

  14. W. S. Wan Ngah and M. A. K. M. Hanafiah, Biochem. Eng. J., 39, 521 (2008).

    Article  Google Scholar 

  15. H. Li, Y. B. Lin, W.M. Guan, J. L. Chang, L. Xu, J. K. Guo and G.H. Wei, J. Hazard. Mater., 179, 151 (2010).

    Article  CAS  Google Scholar 

  16. F. Martin-Dupont, V. Gloaguen, M. Guilloton, R. Granet and P. Krausz, J. Environ. Sci. Heal. A., 41, 149 (2006).

    Article  CAS  Google Scholar 

  17. Y. Zhang, Y. F. Li, L. Q. Yang, X. J. Ma, L.Y. Wang and Z. F. Ye, J. Hazard. Mater., 178, 1046 (2010).

    Article  CAS  Google Scholar 

  18. T. H. Shek, A. Ma, V. K. C. Lee and G. Mckay, Chem. Eng. J., 146, 63 (2009).

    Article  CAS  Google Scholar 

  19. U. A. Guler and M. Sarioglu, J. Environ. Chem. Eng., 1, 369 (2013).

    Article  CAS  Google Scholar 

  20. J. E. B. Cayllahua and M. L. Torem, Chem. Eng. J., 161, 1 (2010).

    Article  CAS  Google Scholar 

  21. E. Malkoc, J. Hazard. Mater., 137, 899 (2006).

    Article  CAS  Google Scholar 

  22. P. King, K. Anuradha, S. B. Lahari, Y. P. Kumar and V. S. R. K. Prasad, J. Hazard. Mater., 153, 324 (2008).

    Article  Google Scholar 

  23. F. Çolak, N. Atar and A. Olgun, Chem. Eng. J., 150, 122 (2009).

    Article  Google Scholar 

  24. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  25. M.M. Areco, L. Saleh-Medina, M. A. Trinelli, J. L. Marco-Brown and M. dos S. Afonso, Colloid. Surface. B., 110, 305 (2013).

    Article  CAS  Google Scholar 

  26. G. Chen, G. M. Zeng, L. Tang, C. Du, X.Y. Jiang, G. H. Huang, H. Liu and G. Shen, Bioresour. Technol., 99, 7034 (2008).

    Article  CAS  Google Scholar 

  27. L. K. Koopal, W. H. van Riemsdijk and J. C.M. de Wit, J. Colloid Interface Sci., 166, 51 (1994).

    Article  CAS  Google Scholar 

  28. H. Freundlich, Phys. Chem. Soc., 57, 384 (1906).

    Google Scholar 

  29. M. Salman, M. Athar, U. Farooq, H. Nazir, A. Noor and S. Nazir, Korean J. Chem. Eng., 30, 1257 (2013).

    Article  CAS  Google Scholar 

  30. H. Seo, M. Lee and S. Wang, Environ. Eng. Res., 18, 45 (2013).

    Article  Google Scholar 

  31. T. Mathialagan, T. Viraraghavan and D. Cullimore, Water Qual. Res. J. Canada, 38, 499 (2003).

    CAS  Google Scholar 

  32. V. Vinodhini and Nilanjana Das, Desalination, 264, 9 (2010).

    Article  CAS  Google Scholar 

  33. N. S. Kumar and M. Kim, Chem. Eng. J., 168, 562 (2011).

    Article  CAS  Google Scholar 

  34. F. Gorzin and A. Asghar Ghoreyshi, Korean J. Chem. Eng., 30, 1594 (2013).

    Article  CAS  Google Scholar 

  35. X.M. Li, Y.R. Tang, Z. X. Xuan, Y. H. Liu and F. Luo, Sep. Purif. Technol., 155, 69 (2007).

    Article  Google Scholar 

  36. A. B. Albadarin, A. H. Al-Muhtaseb, N.A. Al-laqtah, G.M. Walker, S. J. Allen and M. N. M. Ahmad, Chem. Eng. J., 169, 20 (2011).

    Article  CAS  Google Scholar 

  37. S. T. Akar, D. Arslan and T. Alp, J. Hazard. Mater., 227–228, 107 (2012).

    Article  Google Scholar 

  38. V. O. Arief, K. Trilestar, J. Sunarso, N. Indraswati and S. Ismadji, Clean, 36, 937 (2008).

    CAS  Google Scholar 

  39. M. A. Wahab, S. Jellali and N. Jedidi, Bioresour. Technol., 101, 5070 (2010).

    Article  CAS  Google Scholar 

  40. G. C. Panda, S. K. Das and A.K. Guha, Colloids Surf. B., 62, 173 (2008).

    Article  CAS  Google Scholar 

  41. H. Chen, G. L. Dai, J. Zhao, A. Zhong, J. Wu and H. Yan, J. Hazard. Mater., 177, 228 (2010).

    Article  CAS  Google Scholar 

  42. J.H. Zhang, H. Fu, X. S. Lv, J. Tang and X.H. Xu, Biomass Bioenergy, 35, 464 (2011).

    Article  CAS  Google Scholar 

  43. V. Sarin, T. S. Singh and K. K. Pant, Bioresour. Technol., 97, 1986 (2006).

    Article  CAS  Google Scholar 

  44. A. Javaid, R. Bajwa, U. Shafique and J. Anwar, Biomass Bioenergy, 35, 1675 (2011).

    Article  CAS  Google Scholar 

  45. M. A. Wahab, H. Boubakri, S. Jellali and N. Jedidi, J. Hazard. Mater., 241–242, 101 (2012).

    Article  Google Scholar 

  46. F. Pagnanelli, M. P. Papini, L. Toro, M. Trifoni and F. Veglio, Environ. Sci. Technol., 34, 2773 (2000).

    Article  CAS  Google Scholar 

  47. L. Ramrakhiani, R. Majumder and S. Khowala, Chem. Eng. J., 171, 1060 (2011).

    Article  CAS  Google Scholar 

  48. D. M. Suflet, G. C. Chitanu and V. I. Popa, React. Funct. Polym., 66, 1240 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JuanJuan Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Yan, L., Gu, H. et al. Biosorption mechanism of Zn2+ from aqueous solution by spent substrates of pleurotus ostreatus. Korean J. Chem. Eng. 31, 1911–1918 (2014). https://doi.org/10.1007/s11814-014-0206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0206-0

Keywords

Navigation