Skip to main content

Advertisement

Log in

Development of the Al2O3-supported NaNO3-Na2Mg(CO3)2 sorbent for CO2 capture with facilitated sorption kinetics at intermediate temperatures

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

For the development of a dry solid sorbent having quite fast CO2 sorption kinetics in an intermediate temperature range of 245–300 °C to be applicable to a riser-type fluidized bed carbonator, samples of Al2O3-supported MgCO3 (1.2 mmol/g) promoted with different molar amounts of Na2CO3 (1.2, 1.8 mmol/g) and/or NaNO3 (0.6 mmol/g) were prepared by incipient wetness pore volume impregnation. For a reference, an unsupported bulk phase sorbent of NaNO3-Na2Mg(CO3)2 was also prepared. From the sorption reaction using a gas mixture containing CO2 by 2.5–10% at 1 bar for the sorbents after their activation to MgO, Al2O3-supported sorbents were featured by their rapid carbonation kinetics in contrast to the unsupported sorbent showing a quite slow carbonation behavior. The addition of Na2CO3 to the MgCO3/Al2O3 sorbent made MgO species more reactive for the carbonation, bringing about a markedly enhanced kinetic rate and conversion, as compared with the unpromoted MgCO3/Al2O3 sorbent having a small negligible reactivity. The addition of NaNO3 to MgCO3/Al2O3 or to Na2CO3-MgCO3/Al2O3 induced the same promotional effects, but to a lesser magnitude, as observed for the Na2CO3 addition. It was also characteristic for all these MgCO3-based sorbents that initial carbonation conversions with time appeared as sigmoid curves. For the Al2O3-supported sorbent comprised of NaNO3, Na2CO3, and MgCO3 by 0.6, 1.8, and 1.2 mmols, respectively, per gram sorbent, showing the best kinetic performance, a kinetic equation capable of reflecting such sigmoid conversion behavior was established, and its applicability to a riser carbonator was examined throughout a simple model calculation based on the kinetics obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar and R. Gupta, Ind. Eng. Chem. Res., 51, 1438 (2012).

    Article  CAS  Google Scholar 

  2. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013).

    Article  CAS  Google Scholar 

  3. H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, S. Hirano, N. Shigemoto and T. Nonaka, Ind. Eng. Chem. Res., 37, 185 (1998).

    Article  CAS  Google Scholar 

  4. J. C. Abanades, E. J. Anthony, D.Y. Lu, C. Salvador and D. Alvarez, AIChE J., 50, 1614 (2004).

    Article  CAS  Google Scholar 

  5. C.-H. Yu, C.-H. Huang and C.-S. Tan, Aerosol Air Quality Res., 12, 745 (2012).

    CAS  Google Scholar 

  6. K. Kim, D. Kim, Y.-K. Park and K. S. Lee, Int. J. Greenhous Gas Control, 26, 135 (2014).

    Article  CAS  Google Scholar 

  7. M. Iijima, T. Nagayasu, T. Kamijyo and S. Nakatani, Mitsubishi Heavy Industries Technical Review, 48, 26 (2011).

    Google Scholar 

  8. C.-K. Yi, S.-H. Jo, Y. Seo, J.-B. Lee and C.-K. Ryu, Int. J. Greenhouse Gas Control, 1, 31 (2007).

    Article  CAS  Google Scholar 

  9. J.-H. Choi, C.-K. Yi and S.-H. Jo, Korean J. Chem. Eng., 28, 1144 (2011).

    Article  CAS  Google Scholar 

  10. R. Veneman, Z. S. Li, J.A. Hogendoorn, S.R. A. Kersten and D.W. F. Brilman, Chem. Eng. J., 207–208, 18 (2012).

    Article  Google Scholar 

  11. D.K. Lee, D.Y. Min, H. Seo, N.Y. Kang, W.C. Choi and Y.K. Park, Ind. Eng. Chem. Res., 52, 9323 (2013).

    Article  CAS  Google Scholar 

  12. E.R. Monazam, L. J. Shadle, D.C. Miller, H.W. Pennline, D. J. Fauth, J. S. Hoffman and M. L. Gray, AIChE J., 59, 923 (2013).

    Article  CAS  Google Scholar 

  13. K. Zhang, X. S. Li, Y. Duan, D. L. King, P. Singh and L. Li, Int. J. Greenhouse Gas Control, 12, 351 (2013).

    Article  CAS  Google Scholar 

  14. S. G. Mayorga, S. J. Weigel, T.R. Gaffney and J.R. Brzozowski, US Patent, 6,280,503 B1 (2001).

    Google Scholar 

  15. T. Bauer, D. Laing, U. Kröner and R. Tamme, Int. J. Thermophys., 33, 91 (2012).

    Article  CAS  Google Scholar 

  16. R.W. Berg, D. H. Kerridge and P. H. Larsen, J. Chem. Eng. Data, 51, 34 (2006).

    Article  CAS  Google Scholar 

  17. C. Zhao, X. Chen and C. Zhao, Ind. Eng. Chem. Res., 51, 14361 (2012).

    Article  CAS  Google Scholar 

  18. C. Zhao, X. Chen and C. Zhao, Energy Fuels, 26, 1401 (2012).

    Article  CAS  Google Scholar 

  19. G.S. Patience, J. Chaouki, F. Berruti and S.R. Wong, Powder Technol., 72, 31 (1992).

    Article  CAS  Google Scholar 

  20. C. J. Geankoplis, Transport processes and separation process principles, 4th Ed., Prentice Hall, U.S.A. (2003).

    Google Scholar 

  21. D. Kunii and O. Levenspiel, Fluidization Engineering, Wiley, N.Y. (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deuk Ki Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H., Min, D.Y., Kang, N.Y. et al. Development of the Al2O3-supported NaNO3-Na2Mg(CO3)2 sorbent for CO2 capture with facilitated sorption kinetics at intermediate temperatures. Korean J. Chem. Eng. 32, 51–61 (2015). https://doi.org/10.1007/s11814-014-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0195-z

Keywords

Navigation