Skip to main content

Advertisement

Log in

Some physical properties and oxidative stability of biodiesel produced from oil seed crops

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biodiesel is a cleaner burning fuel than petrodiesel and a suitable replacement in diesel engine. It is produced from renewable sources such as vegetable oils or animal fats. Biodiesel fuel was prepared from castor (CSO), palm kernel (PKO) and groundnut (GNO) oils through alkali transesterification reaction. The biodiesel produced was characterized as alternative diesel fuel. Fuel properties such as specific gravity, viscosity, calorific (combustion) value, The CSO, PKO and GNO were measured to evaluate the storage/oxidative stability of the oils to compare them with commercial petrodiesel. The biodiesel produced had good fuel properties with respect to ASTM D 6751 and EN 14214 specification standards, except that the kinematic viscosity of castor oil biodiesel was too low. The viscosity of castor oil biodiesel at different temperatures was in the range of 4.12–7.21 mm2/s. However, promising results which conformed to the above specification standards were realized when castor oil biodiesel was blended with commercial petrodiesel. At 28 °C the specific gravity recorded for CSO, PKO and GNO biodiesel was higher than the values obtained for petrodiesel. Commercial petrodiesel had the highest oxidative stability than biodiesel produced from CSO, PKO and GNO oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fukuda, A. Kondo and H. Noda, J. Biosci. Bioeng., 92(5), 405 (2001).

    CAS  Google Scholar 

  2. C. L. Meher, V. D. Sagar and S. N. Nack, Technical Aspects of Biodiesel Production by Transesterification — A Review, Centre for Rural Development and Technological, Indian Institute of Technology, Delhi, New Delhi, India, 1 (2004).

    Google Scholar 

  3. A. I. Bamgboye and A. C. Hansen, Institute of Agrophysics, 22, 21 (2008).

    CAS  Google Scholar 

  4. A. Gupta, S. K. Sharma and A. P. Toor, J. Petrotech Society, 40 (2007).

    Google Scholar 

  5. O. J. Alamu, T.A Akintola, C.C. Enweremandu and A. E. Adeleke, Scientific Research and Essay, 3(7), 308 (2008).

    Google Scholar 

  6. Y. C. Sharma, B. Singh and S. N. Updahyay, Fuel, 87, 2355 (2008).

    Article  CAS  Google Scholar 

  7. D. Tapasvi, D. Wiesenborn and C. Gustafson, J. American Society of Agricultural Engineers, 48(6), 2215 (2005).

    Article  CAS  Google Scholar 

  8. F. Ma and M. A. Hanna, Bioresour. Technol., 70, 1 (1999).

    Article  CAS  Google Scholar 

  9. X. Zhao, B. El-Zahab and R. Broznahan, J. Appl. Biochem. Biotechnol., 143, 236 (2007).

    Article  CAS  Google Scholar 

  10. D. Pimentel and T.W. Patrik, Natural Resources Research, 14(1) (2005), DO1:10.1007/S/1053-005-4678-8.

    Google Scholar 

  11. H. Noureddini and D. Zhu, J. American Oil Chemists’ Society (JOACS), 74, 1457 (1997).

    Article  CAS  Google Scholar 

  12. J.V. Garpen, Fuel Processing Technology, 85, 1097 (2005).

    Article  Google Scholar 

  13. B. Wenzel, M. Tait, A. Modenes and A. Kroumov, Bioautomation, 5, 13 (2006).

    Google Scholar 

  14. Y. Zhang, M. A. Dube, D. D. McLean and M. Kates, Bioresour. Technol., 89, 1 (2003).

    Article  CAS  Google Scholar 

  15. A. A. Refaat, N. K. Attia, H. A. Sibak, S. T. ElSheltawy and G. I. El-Diwani, Int. J. Environ. Sci. Technol., 5(1), 75 (2008).

    Article  CAS  Google Scholar 

  16. S. Baroutian, M. K. Aroua, A. AbdulRaman and N. M. Sulaiman, J. Appl. Sci., 8(10), 1938 (2008).

    CAS  Google Scholar 

  17. A. B. Chhetri, M. S. Tango, S. M. Budge, K. C. Watts and M. R. Islam, Int. J. Mol. Sci., 9, 169 (2008).

    Article  CAS  Google Scholar 

  18. World Proved Reserved of Oil and Natural Gas, United States Energy Information Administration (USEIA) (2007).

  19. O. J. Alamu, M. A. Waheed, S. O. Jekayinfa and T. A. Akintola, Optimal transesterification duration for biodiesel production from nigerian palm kernel oil, Agricultural Engineering International. The CIGR Ejournal. Manuscript EE 07018, IX (2007a).

    Google Scholar 

  20. J. X. Kyu-Wan, L. Yu, J.H. Mei, Y.W. Kim, L. Yan and K.W. Chun, J. Ind. Eng. Chem., 13(5), 799 (2007).

    Google Scholar 

  21. M. Canakci and J.V. Garpen, J. American Society of Agricultural Engineers, 44(6), 1429 (2001).

    CAS  Google Scholar 

  22. G. Knothe, J. American Society of Agricultural Engineers, 44(2), 193 (2001).

    CAS  Google Scholar 

  23. G. Knothe and K. R. Steidley, Elsevier., 84, 1059 (2005).

    CAS  Google Scholar 

  24. K. Krisnangkura, T. Yimsuwan and R. Pairintra, Elsevier, 2 (2005).

    Google Scholar 

  25. G. Knothe, J. American Oil Chemists Society (JOACS), 83, 10 (2006).

    Google Scholar 

  26. D. Darnoko and M. Cheryan, J. American Oil Chemists’ Society (JAOCS), 77(12), 1269 (2000).

    Article  CAS  Google Scholar 

  27. Wikipedia, the Free Encyclopedia. Biodiesel: A Historical Background. Retrieved on August 2011 from http://www.en.wikipedia.org/wiki/biodiesel .

  28. I. Titipong, Biodiesel production from fryer grease, Unpublished M.Sc. Thesis, Submitted to the College of Graduate Studies and Research, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (2006).

    Google Scholar 

  29. Y. Zhang, M. A. Dube, D. D. McLean and M. Kates, Bioresour. Technol., 89, 1 (2003).

    Article  CAS  Google Scholar 

  30. J. Jitputti, B. Kitiyanan, K. Bunyakiat, P. Rangsunvigit and P. Jenvanitpanjakul, Transesterification of Palm Kernel Oil and Coconut Oil by Difference Solid Catalysts, The Joint International Conference on “Sustainable Energy and Environment, 1–3 December, Hua, Thailand (2004).

    Google Scholar 

  31. S. Shah, S. Sharma and M. N. Gupta, J. American Chem. Soc., Energy and Fuels, 18, 154 (2004).

    Article  CAS  Google Scholar 

  32. Y. A. Yuan and Q. Zhang, The specific gravity of biodiesel fuels and their blends with diesel fuel, Agricultural Engineering International: The CIGR Journal of Scientific Research and Development, Manuscript EE 04 004, VI (2004).

    Google Scholar 

  33. P. David, The Chemical Analysis of Food, 7th Ed., Churchill Livingstone. Edinburgh, London, 489 (1976).

    Google Scholar 

  34. V.M. Krause and A. M. Hunscher, Food, Nutrition and Diet Therapy, 5th Ed., W. S. Saunders Company, Philadelphia, London, 56 (1999).

    Google Scholar 

  35. C. Alais and G. Linden, Food Biochemistry, Aspen Publication, Gaithersburg, Maryland, 67 (1999).

    Google Scholar 

  36. T. Leevijit, W. Wisutmethangoon, G. Prateepchaikul, C. Tongurai and M. Allen, Second Other Kinetics of Palm Oil Transesterification, The Joint International Conference on “Sustainable Energy and Environment (SEE) (3 - 025(O)) 1–3 December, Hua Hin, Thailand, 277 (2004).

    Google Scholar 

  37. S. H. Fogler, Elements of Chemical Reaction Engineering, 4th Ed. Pearson Education International, United States, 10 (2006).

    Google Scholar 

  38. O. J. Alamu, The Pacific Journal of Science and Technology, 8(2), 43 (2007).

    Google Scholar 

  39. J. J. Asiedu, Processing tropical crops. A technological approach, Macmillan Education Ltd., London, 124 (1989).

    Google Scholar 

  40. G. Knothe, J. American Oil Chemists Society (JAOCS), 76(7), 23 (1999).

    Google Scholar 

  41. A. A. Ibitoye, Laboratory Manual on Basic Method in Plant Analysis, Concept IT, Akure, Nigeria, 20 (2006).

    Google Scholar 

  42. E. A. Ajav and A. O. Akingbehin, A study of some fuel properties of local ethanol blended with diesel fuel, Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. Manuscript EE 04 004 Vol. VI, (2002).

    Google Scholar 

  43. S. Lebedevas and A. Vaicekausas, Research into the application of biodiesel in the transport sector of lithuania, Transport., XXI(2), 80 (2006).

    Google Scholar 

  44. M. Sujatha, Biotechnological interventions for improving jatropha and castor for biofuels, Petrotech, New Delhi, India (P09 - 869) (2009).

    Google Scholar 

  45. A. R. Ferrari, S. D.V. Oliveira and A. Scabio, Scientia Agricola, 62(3) (2005).

    Google Scholar 

  46. J.V. Garpen, B. Shanks and R. Pruszko, Biodiesel Production Technology, National Renewable Energy Laboratory (NREL) Colorado, Sub-Contractor Report, 1 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatai Abiola Lateef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lateef, F.A., Onukwuli, O.D., Okoro, U.C. et al. Some physical properties and oxidative stability of biodiesel produced from oil seed crops. Korean J. Chem. Eng. 31, 725–731 (2014). https://doi.org/10.1007/s11814-014-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0028-0

Keywords

Navigation