Skip to main content

Advertisement

Log in

2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We suggest a 2D-plot representation combined with life cycle greenhouse gas (GHG) emissions and life cycle cost for various energy conversion technologies. In general, life cycle assessment (LCA) not only analyzes at the use phase of a specific technology, but also covers widely related processes of before and after its use. We use life cycle GHG emissions and life cycle cost (LCC) to compare the energy conversion process for eight resources such as coal, natural gas, nuclear power, hydro power, geothermal power, wind power, solar thermal power, and solar photovoltaic (PV) power based on the reported LCA and LCC data. Among the eight sources, solar PV and nuclear power exhibit the highest and the lowest LCCs, respectively. On the other hand, coal and wind power locate the highest and the lowest life cycle GHG emissions. In addition, we used the 2D plot to show the life cycle performance of GHG emissions and LCCs simultaneously and realized a correlation that life cycle GHG emission is largely inversely proportional to the corresponding LCCs. It means that an expensive energy source with high LCC tends to have low life cycle GHG emissions, or is environmental friendly. For future study, we will measure the technological maturity of the energy sources to determine the direction of the specific technology development based on the 2D plot of LCCs versus life cycle GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References for supporting information

  1. ACARP, Coal in a Sustainable Society, Australian Coal Association Research Program (2011).

    Google Scholar 

  2. IER, ExternE Externalities of Energy. Vol XX: National Implementation, Xth Ed., Institut für Energiewirtschaft und Rationelle Energieanwendung (1999).

    Google Scholar 

  3. J. E. Berry, M. R. Holland, P. R. Watkiss, R. Boyd and W. Stephenson, Power Generation and the Environment — a UK Perspective, Vol. 1, AEA Technology (1998).

    Google Scholar 

  4. P. L. Spath, M. K. Mann and D.R. Kerr, Life Cycle Assessment of Coal-Fired Power Production, Report NREL/TP-570-25119, National Renewable Energy Laboratory (1999).

    Book  Google Scholar 

  5. P. L. Spath and M.K. Mann, Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration — Comparing the Energy Balance, Greenhouse Gas Emissions and Economics, National Renewable Energy Laboratory (2004).

    Book  Google Scholar 

  6. IEA/NEA, Projected cost of generating electricity — 2005 update, Nuclear Energy Agency / International Energy Agency (2005).

    Google Scholar 

  7. P. L. Spath and M. K. Mann, Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System, Report NREL/TP-570-27715, National Renewable Energy Laboratory (2000).

    Book  Google Scholar 

  8. P. J. Meier, Life-Cycle Assessment of Electricity Generation Systems and Applications for Climate Change Policy Analysis, Fusion Technology Institute (2002).

    Google Scholar 

  9. VATTELFALL, Certified Environmental Product Declaration of Electricity from Forsmarks Kraftgrupp (FKA), VATTENFALL (2004).

    Google Scholar 

  10. VATTELFALL, Vattenfall AB generation Nordic countries Certified Environmental Product Declaration of Electricity from Ringhals NPP, VATTELFALL (2004).

    Google Scholar 

  11. IPCC, Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2007).

    Google Scholar 

  12. IEA, Benign energy?: The environmental implications of renewables, International Energy Agency (1998).

    Google Scholar 

  13. A. Tremblay, L. Varfalvy, C. Roehm and M. Garneau, The issue of greenhouse gases from hydroelectric reservoirs: from boreal to tropical regions, The United Nations Symposium on Hydropower and Sustainable Development, Beijing, China (2004).

    Google Scholar 

  14. VATTELFALL, Certified environmental product Declaration of Electricity from Hydropower Station on the River Lule Älv, VATTENFALL (2002).

    Google Scholar 

  15. VATTELFALL, Certified environmental product Declaration of Electricity from Hydropower Station on the River Ume Älv, VATTENFALL (2002).

    Google Scholar 

  16. Varun, I. K. Bhat and R. Prakash, Open Renewable Energy J., 1, 11 (2008).

    Google Scholar 

  17. Varun, R. Prakash and I. K. Bhat, Int. J. Green Energy, 7(4), 361 (2010).

    Article  CAS  Google Scholar 

  18. T. J. Hammons, Electr. Power Components and Syst., 32(5), 529 (2004).

    Article  Google Scholar 

  19. Renewable Energy Policy Network, Renewables 2005 Global Status Report, World Watch Institute (2005).

    Google Scholar 

  20. T. B. Johansson and W. Turkenburg, Energy for Sustainable Dev., 8(1), 5 (2004).

    Article  Google Scholar 

  21. T. Turkulainen, Diploma Thesis, Lappeenranta University of Technology (1998).

  22. A. Chataignere and D. Le Boulch, Wind turbine systems. In: ECLIPSE-Environmental and Ecological Life Cycle Inventories for Present and Future Power Systems in Europe. Final Report, ECLIPSE (2003).

    Google Scholar 

  23. L. Schleisner, Renewable Energy, 20(3), 279 (2000).

    Article  CAS  Google Scholar 

  24. D. Gürzenich, J. Mathur, N. Bansal and H. J. Wagner, Int. J. Life Cycle Assess., 4(3), 143 (1999).

    Article  Google Scholar 

  25. N. Nomura, A. Inaba, Y. Tonooka and M. Akai, Appl. Energy, 68(2), 215 (2001).

    Article  CAS  Google Scholar 

  26. M. Lenzen, Solar Energy, 65(6), 353 (1999).

    Article  CAS  Google Scholar 

  27. Y. Lechón, C. D. l. Rúa and R. Sáez, J. Solar Energy Eng., 130(2), 0210121 (2008).

    Article  Google Scholar 

  28. F. Kreith, P. Norton and D. Brown, Energy, 15(12), 1181 (1990).

    Article  CAS  Google Scholar 

  29. P. Frankl, A. Corrado and S. Lombardelli, Photovoltaic system, Interna Photovoltaic system In: ECLIPSE-Environmental and Ecological Life Cycle Inventories for Present and Future Power Systems in Europe. Final Report, ECLIPSE (2003).

    Google Scholar 

  30. T. Muneer, S. Younes, N. Lambert and J. Kubie, J. Power Energy Part A, 220,A6, 517 (2006).

    Article  CAS  Google Scholar 

  31. J. Mathur, N. K. Bansal. and H. J. Wagner, Energy Sources, 24(1), 19 (2002).

    Article  Google Scholar 

  32. E. A. Alsema, Progress in Photovoltaics, 8(1), 17 (2000).

    Article  CAS  Google Scholar 

  33. H. Hondo, Energy, 30(11–12), 2042 (2005).

    Article  CAS  Google Scholar 

  34. M. Ito, K. Kato, K. Komoto, T. Kichimi and K. Kurokawa, Progress in Photovoltaics, 16(1), 17 (2008).

    Article  CAS  Google Scholar 

  35. R. Kannan, K.C. Leong, R. Osman, H. K. Ho and C. P. Tso, Solar Energy, 80(5), 555 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Kyu Ahn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Tenreiro, C. & Ahn, T.K. 2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources. Korean J. Chem. Eng. 30, 1882–1888 (2013). https://doi.org/10.1007/s11814-013-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0121-9

Key words

Navigation