Skip to main content
Log in

Adaptive neuro-fuzzy inference system based faulty sensor monitoring of indoor air quality in a subway station

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new faulty sensor monitoring method based on an adaptive neuro-fuzzy inference system (ANFIS) is proposed to improve the monitoring performance of indoor air quality (IAQ) in subway stations. To enhance network performance, a data preprocessing step for detecting outliers and treating missing data is implemented before building the monitoring models. A squared prediction error (SPE) monitoring index based on the ANFIS prediction model is proposed to detect sensor faults, where the confidence limit for the SPE index is determined by using the kernel density estimation method. The proposed monitoring approach is applied to detect four typical kinds of sensor faults that may happen in the indoor space of a subway. The prediction results in the subway system indicate that the prediction accuracy of an ANFIS structure with 15 clusters is superior to that of an appropriate artificial neural network structure. Specifically, when detecting one kind of complete failure fault that happened within the normal range, the detection performance of ANFIS-based SPE outperforms that of a traditional principal component analysis method. The developed sensor monitoring technique could work well for other kinds of sensor faults resulting from a noxious underground environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-U. Park and K.-C. Ha, Environ. Int., 34, 629 (2008).

    Article  CAS  Google Scholar 

  2. X. Ye, Z. Lian, C. Jiang, Z. Zhou and H. Chen, Environ. Monit. Assess, 167, 643 (2010).

    Article  Google Scholar 

  3. L. Y. Chan, W. L. Lau, X. M. Wang and J. H. Tang, Environ. Int., 29, 429 (2003).

    Article  CAS  Google Scholar 

  4. J. H. Cho, K. Hee Min and N. W. Paik, Int. J. Hyg. Environ. Heal., 209, 249 (2006).

    Article  Google Scholar 

  5. Y. Feng, C. Mu, J. Zhai, J. Li and T. Zou, J. Hazard. Mater., 183, 574 (2010).

    Article  CAS  Google Scholar 

  6. J. S. Pandey, R. Kumar and S. Devotta, Atmos. Environ., 39, 6868 (2005).

    Article  CAS  Google Scholar 

  7. C. K. Yoo, K. Villez, S. W. Van Hulle and P. A. Vanrolleghem, Environmetrics, 19, 602 (2008).

    Article  CAS  Google Scholar 

  8. R. Dunia, S. J. Qin, T. F. Edgar and T. J. McAvoy, AIChE J., 42, 2797 (1996).

    Article  CAS  Google Scholar 

  9. V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri and K. Yin, Comput. Chem. Eng., 27, 327 (2003).

    Article  CAS  Google Scholar 

  10. J. C. M. Pires, S. I. V. Sousa, M. C. Pereira, M. C. M. Alvim-Ferraz and F. G. Martins, Atmos. Environ., 42, 1249 (2008).

    Article  CAS  Google Scholar 

  11. J. Lau, W. T. Hung and C. S. Cheung, Atmos. Environ., 43, 769 (2009).

    Article  CAS  Google Scholar 

  12. Y. Kim, J. T. Kim, I. Kim, J.-C. Kim and C. Yoo, Environ. Eng. Sci., 27, 721 (2010).

    Article  CAS  Google Scholar 

  13. H. Liu, M. Kim, O. Kang, B. Sankararao, J. T. Kim, J.-C. Kim and C. K. Yoo, Indoor Built Environ., 21, 205 (2012).

    Article  CAS  Google Scholar 

  14. L. H. Chiang, E. L. Russell and R. D. Braatz, Fault detection and diagnosis in industrial systems, Springer-Verlag (2001).

  15. S. J. Qin, J. Chemometrics, 17, 480 (2003).

    Article  CAS  Google Scholar 

  16. W. Ku, R. H. Storer and C. Georgakis, Chemometr. Intell. Lab, 30, 179 (1995).

    Article  CAS  Google Scholar 

  17. J. Chen and K.-C. Liu, Chem. Eng. Sci., 57, 63 (2002).

    Article  CAS  Google Scholar 

  18. S. Haykin, Neural networks, Prentice-Hall (1999).

  19. J.-M. Lee, C. Yoo, S. W. Choi, P. A. Vanrolleghem and I.-B. Lee, Chem. Eng. Sci., 59, 223 (2004).

    Article  CAS  Google Scholar 

  20. Z. Ge, C. Yang and Z. Song, Chem. Eng. Sci., 64, 2245 (2009).

    Article  CAS  Google Scholar 

  21. M. A. Kramer, AIChE J., 37, 233 (1991).

    Article  CAS  Google Scholar 

  22. D. Dong and T. J. McAvoy, Comput. Chem. Eng., 20, 65 (1996).

    Article  CAS  Google Scholar 

  23. J. Chen and C.-M. Liao, J. Process. Contr., 12, 277 (2002).

    Article  CAS  Google Scholar 

  24. J. Zhang, Comput. Chem. Eng., 30, 558 (2006).

    Article  CAS  Google Scholar 

  25. J. S. R. Jang, IEEE Trans. Syst. Man Cybern., 23, 665 (1993).

    Article  Google Scholar 

  26. T. Y. Pai, T. J. Wan, S. T. Hsu, T. C. Chang, Y. P. Tsai, C. Y. Lin, H. C. Su and L. F. Yu, Comput. Chem. Eng., 33, 1272 (2009).

    Article  CAS  Google Scholar 

  27. C. K. Lau, Y. S. Heng, M. A. Hussain and M. I. M. Nor, ISA Trans., 49, 559 (2010).

    Article  CAS  Google Scholar 

  28. M. Huang, J. Wan, Y. Ma, H. Zhang, Y. Wang, C. Wei, H. Liu and C. Yoo, Ind. Eng. Chem. Res., 50, 13500 (2011).

    Article  CAS  Google Scholar 

  29. M. Huang, J. Wan, Y. Wang, Y. Ma, H. Zhang, H. Liu, Z. Hu and C. Yoo, Korean J. Chem. Eng., 29(5), 636 (2012).

    Article  CAS  Google Scholar 

  30. J. S. R. Jang, C. T. Sun and E. Mizutani, Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, Prentice Hall (1997).

  31. T. Takagi and M. Sugeno, IEEE Trans. Syst. Man Cybern., 15, 116 (1985).

    Article  Google Scholar 

  32. M. Sugeno and G. T. Kang, Fuzzy Set. Syst., 28, 15 (1988).

    Article  Google Scholar 

  33. J. Jackson, A user’s guide to principal components, Wiley (1991).

  34. B. M. Wise and N. B. Gallagher, J. Process. Contr., 6, 329 (1996).

    Article  CAS  Google Scholar 

  35. S. J. Qin and R. Dunia, J. Process. Contr., 10, 245 (2000).

    Article  Google Scholar 

  36. Q. Chen, R. J. Wynne, P. Goulding and D. Sandoz, Control Eng. Pract., 8, 531 (2000).

    Article  Google Scholar 

  37. E. B. Martin and A. J. Morris, J. Process. Contr., 6, 349 (1996).

    Article  CAS  Google Scholar 

  38. I. Jolliffe, Principal component analysis, Springer-Verlag (2002).

  39. P. R. C. Nelson, P. A. Taylor and J. F. MacGregor, Chemometr. Intell. Lab, 35, 45 (1996).

    Article  CAS  Google Scholar 

  40. I. Stanimirova, M. Daszykowski and B. Walczak, Talanta, 72, 172 (2007).

    Article  CAS  Google Scholar 

  41. T. Chen, E. Martin and G. Montague, Comput. Stat. Data. An., 53, 3706 (2009).

    Article  Google Scholar 

  42. M. J. Nieuwenhuijsen, J. E. Gómez-Perales and R. N. Colvile, Atmos. Environ., 41, 7995 (2007).

    Article  CAS  Google Scholar 

  43. J. Yu, J. Process. Contr., 22, 1358 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangKyoo Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Huang, M., Kim, J.T. et al. Adaptive neuro-fuzzy inference system based faulty sensor monitoring of indoor air quality in a subway station. Korean J. Chem. Eng. 30, 528–539 (2013). https://doi.org/10.1007/s11814-012-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0197-7

Key words

Navigation