Skip to main content
Log in

Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrezin R, Haym B (1999). Response of a tension leg platform to stochastic wave forces. Probabilistic Engineering Mechanics, 14 (1), 3–17. DOI: 10.1016/S0266-8920(98)00012-5

    Article  Google Scholar 

  • Ali SF, Michael F, Sondipon A (2011). Analysis of energy harvesters for highway bridges. Journal of Intelligent Material Systems and Structures, 22(16), 1929–1938. DOI: 10.1177/1045389X11417650

    Article  Google Scholar 

  • Carter DJT (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17–33. DOI: 10.1016/0029-8018(82)90042-7

    Article  Google Scholar 

  • Deb K (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Inc., Chichester, UK.

    MATH  Google Scholar 

  • Erturk A (2011). Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. Journal of Intelligent Material Systems and Structures, 22 (17), 1959–1973. DOI: 10.1177/1045389X11420593

    Article  Google Scholar 

  • Farinholt KM, Miller N, Sifuentes W, MacDonald J, Farrar CR (2010). Energy harvesting and wireless energy transmission for embedded SHM sensor node. Structural Health Monitoring, 9(3), 269–280. DOI: 10.1177/1475921710366647

    Article  Google Scholar 

  • Han SM, Benaroya H (2000). Non-linear coupled transverse and axial vibration of a compliant structure, Part 2: Forced vibration. Journal of Sound and Vibration, 237(5), 875–900. DOI: 10.1006/jsvi.2000.3148

    Article  Google Scholar 

  • Haritos N (2007). Introduction to the analysis and design of offshore structures—An overview. Electronic Journal of Structural Engineering Special Issue: Loading on Structures, 7, 55–65.

    Google Scholar 

  • Haupt RL, Haupt SE (2004). Practical genetic algorithms. 2nd ed, John Wiley & Sons, Hoboken, USA.

    MATH  Google Scholar 

  • Kern W(1991). Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing (Emile Aarts and Jan Korst). SIAM Review, 33(2), 323–323. DOI: 10.1137/1033080

    Google Scholar 

  • Kim SH, Ahn JH, Chung HM, Kang HW (2011). Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sensors and Actuators A: Physical, 167(2), 468–483. DOI: 10.1016/j.sna.2011.03.007

    Article  Google Scholar 

  • Kumari Ramachandran GKV (2013). A numerical model for a floating TLP wind turbine. Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark.

    Google Scholar 

  • Lee CK, Moon FC (1990). Modal sensors/actuators. Journal of Applied Mechanics, 57(2), 434–441. DOI: 10.1115/1.2892008

    Article  Google Scholar 

  • Liang Junrui, Liao Weihsin (2012). Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE/ASME Transactions on Mechatronics, 17(6), 1145–1157. DOI: 10.1109/TMECH.2011.2160275

    Article  Google Scholar 

  • Liu Zhou, Frigaard P (1999). Generation and analysis of random waves. Aalborg Universitet, Aalborg, Denmark.

    Google Scholar 

  • Morison JR, Johnson JW, Schaaf SA (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(5), 149–154. DOI: 10.2118/950149-G

    Article  Google Scholar 

  • Murray R, Rastegar J (2009). Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys. Proc. SPIE 7288, Active and Passive Smart Structures and Integrated Systems 2009, San Diego, USA, 72880E. DOI: 10.1117/12.815852

    Google Scholar 

  • Nagayama T, Jung HJ, Spencer Jr BF, Jang S, Mechitov KA, Cho S, Ushita M, Yun SB, Agha GA, Fujino Y (2010). International collaboration to develop a structural health monitoring system utilizing wireless smart sensor network and its deployment on a cable-stayed bridge. 5th World Conference on Structural Control and Monitoring, Tokyo, Japan, 1–10.

    Google Scholar 

  • Osman IH, Potts CN (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551–557. DOI: 10.1016/0305-0483(89)90059-5

    Google Scholar 

  • Park JW, Jung HJ, Jo H, Jang S, Spencer Jr BF (2010). Feasibility study of wind generator for smart wireless sensor node in cable-stayed bridge. Proc. SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, USA, 764747. DOI: 10.1117/12.853600

    Chapter  Google Scholar 

  • Seyul S (2006). Design of ocean platforms against ringing response. Ph.D. thesis, Texas Tech University, Lubbock, USA.

    Google Scholar 

  • Shigley JE, Mischke CR, Richard GB (2004). Mechanical engineering design. McGraw-Hill, New York, USA.

    Google Scholar 

  • Taylor GW, Burns JR, Kammann SA, Powers WB, Welsh TR (2001). The energy harvesting eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), 539–547. DOI: 10.1109/48.972090

    Article  Google Scholar 

  • Van Laarhoven PJM, Aarts EHL (1987). Simulated annealing: Theory and applications. Springer, Amsterdam, The Netherlands, 7–15. DOI: 10.1007/978-94-015-7744-1

    Book  MATH  Google Scholar 

  • Wang Huiming, Zou Long (2013). Interfacial effect on the electromechanical behaviors of piezoelectric/elastic composite smart beams. Journal of Intelligent Material Systems and Structures, 24(4), 421–430. DOI: 10.1177/1045389X12461723

    Article  Google Scholar 

  • Williams CB, Yates RB (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1), 8–11. DOI: 10.1016/0924-4247(96)80118-X

    Article  Google Scholar 

  • Wu Nan, Wang Quan, Dong Xiexiang (2015). Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Applied Ocean Research, 50, 110–118. DOI: 10.1016/j.apor.2015.01.004

    Article  Google Scholar 

  • Wu X, Lee D W(2014). An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application. Sensors and Actuators A: Physical, 219, 73–79. DOI: 10.1016/j.sna.2014.09.002

    Article  Google Scholar 

  • Xie XD, Wang Q, Wu N (2014a). Energy harvesting from transverse ocean waves by a piezoelectric plate. International Journal of Engineering Science, 81, 41–48. DOI: 10.1016/j.ijengsci.2014.04.003

    Article  Google Scholar 

  • Xie XD, Wang Q, Wu N (2014b). Potential of a piezoelectric energy harvester from sea waves. Journal of Sound and Vibration, 333 (5), 1421–1429. DOI: 10.1016/j.jsv.2013.11.008

    Article  Google Scholar 

  • Zurkinden AS, Campanile F, Martinelli L (2007). Wave energy converter through piezoelectric polymers. Proceedings of the COMSOL Users Conference, Grenoble, France, 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Ettefagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirab, H., Fathi, R., Jahangiri, V. et al. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters. J. Marine. Sci. Appl. 14, 440–449 (2015). https://doi.org/10.1007/s11804-015-1327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1327-5

Keywords

Navigation