Skip to main content
Log in

Organic light emitting devices employing non-doped structure

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A kind of efficient non-doped white organic light-emitting diodes (WOLEDs) were realized by using a bright blue-emitting layer of 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl (DPVBi) combining with red emitting ultrathin layer of [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]propane-dinitrile (DCM2) and green emitting ultrathin layer of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) with different thicknesses of 0.05 nm, 0.10 nm and 0.20 nm. For comparing, a doped WOLED was also fabricated, in which C545T and DCM2 are codoped into DPVBi layer to provide blue, green and red emission for obtaining white emission. The maximum luminance and power efficiency of the doped WOLED are 5 765 cd/m2 at 16 V and 5.23 lm/W at 5 V, respectively, and its Commission Internationale de l’Eclairage (CIE) coordinate changes from (0.393 7, 0.445 3) at 5 V to (0.300 7, 0.373 8) at 12 V. When the thickness of the ultrathin C545T layer in non-doped WLEDs increases, the emission luminance increases, but all non-doped devices are in the yellow white region. The device with 0.10-nm-thick C545T has a maximum efficiency of 15.23 cd/A at 8 V and a maximum power efficiency of 6.51 lm/W at 7 V, and its maximum luminance is 10 620 cd/m2 at 16 V. CIE coordinates of non-doped WLEDs with C545T thickness of 0.05 nm, 0.10 nm and 0.20 nm are (0.447 3, 0.455 6), (0.464 0, 0.473 1) and (0.458 4, 0.470 0) at 8 V, respectively.1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li and J. X. Tang, Applied Physics Letters 100, 013308 (2012).

    Article  ADS  Google Scholar 

  2. J. H. Hwang, H. K. Choi, J. H. Moon, T. Y. Kim, J. W. Shin, C. W. Joo, J. H. Han, D. H. Cho, J. W. Huh, S. Y. Choi, J. I. Lee and H. Y. Chu, Applied Physics Letters 100, 133304 (2012).

    Article  ADS  Google Scholar 

  3. W. Ji, L. Zhang, K. Xu, W. Xie, H. Zhang, G. Liu and J. Yao, Organic Electronics 12, 2192 (2011).

    Article  Google Scholar 

  4. W. Ji, J. Zhao, Z. Sun and W. Xie, Organic Electronics 12, 1137 (2011).

    Article  Google Scholar 

  5. S. Su, E. Gonmori, H. Sasabe and J. Kido, Advanced Materials 20, 4189 (2008).

    Google Scholar 

  6. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 459, 234 (2009).

    Article  ADS  Google Scholar 

  7. Q. Huang, R. Meerheim, K. Fehse, G. Schwartz, S. Reineke, K. Walzer and K. Leo, SID Symposium Digest of Technical Papers 38, 1282 (2007).

    Article  Google Scholar 

  8. J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).

    Article  ADS  Google Scholar 

  9. R. S. Deshpande, V. Bulovic and S. R. Forrest, Applied Physics Letters 75, 888 (1999).

    Article  ADS  Google Scholar 

  10. B. W. D’Andrade, M. E. Thompson and S. R. Forrest, Advanced Materials 14, 147 (2002).

    Article  Google Scholar 

  11. C. W. Tang, S. A. Vanslyke and C. H. Chen, Journal of Applied Physics 65, 3610 (1989).

    Article  ADS  Google Scholar 

  12. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Applied Physics Letters 75, 766 (1999).

    Article  ADS  Google Scholar 

  13. Z. Y. Xie, L. S. Hung and S. T. Lee, Applied Physics Letters 79, 1048 (2001).

    Article  ADS  Google Scholar 

  14. T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Applied Physics Letters 81, 3329 (2002).

    Article  ADS  Google Scholar 

  15. Xie W F, Wu Z J, Liu S Y and Lee S T, Journal of Physics D: Applied Physics 36, 2331 (2003).

    Article  ADS  Google Scholar 

  16. Xie W F, Liu S Y and Zhao Y, Journal of Physics D: Applied Physics 36, 1246 (2003).

    Article  ADS  Google Scholar 

  17. Yang H S, Zhao Y, Xie W F, Shi Y W, Hu W, Meng Y L, Hou J Y and Liu S Y, Semiconductor Science & Technology 21, 1447 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-shuang Wu  (吴丽双).

Additional information

This work has been supported by the Major Project of Science and Technology Office of Fujian Province of China (No.2014H0042), the Natural Science Foundation of Fujian Province of China (No.2015J01664), the Project of Science and Technology Research of Quanzhou in Fujian Province of China (Nos.2013Z125 and 2014Z137), and the 2016 Annual National or Ministries of the Quanzhou Normal University Prepare Research Foundation Project (No.2016YYKJ21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hs., Yang, Qz. & Wu, Ls. Organic light emitting devices employing non-doped structure. Optoelectron. Lett. 13, 192–196 (2017). https://doi.org/10.1007/s11801-017-7042-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-7042-5

Navigation