Skip to main content
Log in

Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Microstructure and misfit dislocation behavior in In x Ga1-x As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the In x Ga1-x As buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jin, H. Nakahara, K. Saitoh, T. Saka, T. Ujihara, N. Tanaka and Y. Takeda, Journal of Crystal Growth 353, 84 (2012).

    Article  ADS  Google Scholar 

  2. M. Hostut, M. Alyoruk, T. Tansel, A. Kilic, R. Turan, A. Aydinli and Y. Ergun, Superlattices & Microstructures 79, 116 (2015).

    Article  Google Scholar 

  3. N. Tounsi, M.M. Habchi, Z. Chine, A. Rebey and B. El Jani, Superlattices & Microstructures 59, 133 (2013).

    Article  ADS  Google Scholar 

  4. S.H. Huynh, M.T.H. Ha, H.B. Do, Q.H. Luc and H.W. Yu, Applied Physics Letters 109, 10 (2016).

    Article  Google Scholar 

  5. F. Zheng, C.Wang, Z. B. Sun and G.J. Zhai, Journal of Optoelectronics·Laser 25, 1254 (2014). (in Chinese)

    Google Scholar 

  6. S.J. Lin, J.J. Li, L.J. He, J. Den and J. Han, Journal of Optoelectronics·Laser 25, 1471 (2014). (in Chinese)

    Google Scholar 

  7. T. Mano, K. Mitsuishi, N. Ha, A. Ohtake and A. Castellano, Crystal Growth & Design 16, 5412 (2016).

    Article  Google Scholar 

  8. J.L. Weyher, R. Fornari, T. Görög, J.J. Kelly and C.B. Erné, Journal of Crystal Growth 141, 57 (1994).

    Article  ADS  Google Scholar 

  9. P.D. Casa, A. Maaßdorf, U. Zeimer and M. Weyers, Journal of Crystal Growth 434, 116 (2016).

    Article  ADS  Google Scholar 

  10. J.G. Grabmaier and C.B. Watson, Physical Status Solidi 32, K13 (1969).

    Article  ADS  Google Scholar 

  11. T. Takenaka, H. Hayashi, K. Murata and T. Inoguchi, Jpn J. Applied Physics Letters 17, 1145 (1978).

    Article  ADS  Google Scholar 

  12. S. Emura, S. Gonda and Y. Matsui, Physical Review B 38, 3280 (1988).

    Article  ADS  Google Scholar 

  13. M.R. Islam, P. Verma and M. Yamada, Jpn J. Applied Physics 41, 991 (2002).

    Article  ADS  Google Scholar 

  14. J.P. Estrera, P.D. Stevens and R. Glosser, Applied Physics Letters 61, 1927 (1992).

    Article  ADS  Google Scholar 

  15. J. Groenen, G. Landa and R. Carles, J. Applied Physics 82, 803 (1997).

    Article  ADS  Google Scholar 

  16. G. Burns, C.R. Wie and F.H. Dacol, Applied Physics Letters 51, 1919 (1987).

    Article  ADS  Google Scholar 

  17. B. Jusserand, P. Voisin and M. Voos, Applied Physics Letters 46, 678 (1985).

    Article  ADS  Google Scholar 

  18. F. Cerdeira, C.J. Buchenauer and F.H. Pollak, Physical Review B 5, 580 (1972).

    Article  ADS  Google Scholar 

  19. R.J. Nicholas, L.C. Brunel and S. Huant, Physical Review Letter 55, 883 (1985).

    Article  ADS  Google Scholar 

  20. T. Sasaki, A.G. Norman, M.J. Romero, M.M. Al-Jassim, M. Takahasi, N. Kojima, Y. Ohshita and M. Yamaguchi, Physical Status Solidi C 10, 1640 (2013).

    Article  Google Scholar 

  21. J.P. Li, G.Q. Miao, Z.W. Zhang and Y.G. Zeng, Cryst. Eng. Comm. 17, 5808 (2015).

    Article  Google Scholar 

  22. M. Fatemi and R.E. Stahlbush, Applied Physics Letters 58, 825 (1991).

    Article  ADS  Google Scholar 

  23. Bai Y, Lee K E and Cheng C, J. Applied Physics 104, 084518 (2008).

    Article  ADS  Google Scholar 

  24. Chen Y W, Hsu W C and Hsu R T, Solid-State Electronics 48, 119 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-sheng Xia  (夏茂盛).

Additional information

This work has been supported by the National Key Basic Research Program of China (No.2012CB619200), the National Natural Science Foundation of China (No.61474053), the State Key Laboratory for Mechanical Behavior of Materials of Xi'an Jiaotong University (No.20161806), and the Natural Science Basic Research Open Foundation of the Key Lab of Automobile Materials, Ministry of Education, Jilin University (No.1018320144001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Ql., Guo, Zx., Zhao, L. et al. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer. Optoelectron. Lett. 12, 441–445 (2016). https://doi.org/10.1007/s11801-016-6190-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6190-3

Navigation