Skip to main content
Log in

Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We consider the vector space of globally differentiable piecewise polynomial functions defined on a three-dimensional polyhedral domain partitioned into tetrahedra. We prove new lower and upper bounds on the dimension of this space by applying homological techniques. We give an insight of different ways of approaching this problem by exploring its connections with the Hilbert series of ideals generated by powers of linear forms, fat points, the so-called Fröberg–Iarrobino conjecture, and the weak Lefschetz property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfeld P., Schumaker L.L.: Bounds on the dimensions of trivariate spline spaces. Adv. Comput. Math. 29(4), 315–335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alfeld P., Schumaker L.L., Sirvent M.: On dimension and existence of local bases for multivariate spline spaces. J. Approx Theory 70(2), 243–264 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alfeld P., Schumaker L.L., Whiteley W.: The generic dimension of the space of C 1 splines of degree d ≥ 8 on tetrahedral decompositions. SIAM J. Numer. Anal. 30(3), 889–920 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anick D.J.: Thin algebras of embedding dimension three. J. Algebra 100(1), 235–259 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Billera L.J.: Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. Am. Math. Soc. 310(1), 325–340 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brambilla, M.C., Dumitrescu, O., Postinghel, E.: On a notion of speciality of linear systems in \({\mathbb{P}^n}\). Trans. Am. Math. Soc (2013) arXiv:1210.5175v2 [math.AG]

  7. Chandler K.A.: The geometric interpretation of Fröberg–Iarrobino conjectures on infinitesimal neighbourhoods of points in projective space. J. Algebra 286(2), 421–455 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciliberto, C.: Geometric Aspects of Polynomial Interpolation in More Variables and of Waring’s Problem, European Congress of Mathematics, Vol. I (Barcelona, 2000), pp. 289–316 (2001)

  9. Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric analysis: Toward integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  10. Eisenbud, D., Grayson, D., Stillman, M.: Macaulay2, Software system for research in algebraic geometry. http://www.math.illinois.edu/Macaulay2/

  11. Fröberg R.: An inequality for Hilbert series of graded algebras. Math. Scand 56(2), 117–144 (1985)

    MATH  MathSciNet  Google Scholar 

  12. Geramita A.V., Schenck H.: Fat points, inverse systems, and piecewise polynomial functions. J. Algebra 204(1), 116–128 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. A.V. Geramita: Inverse Systems of Fat Points: Waring’s Problem, Secant Varieties of Veronese Varieties and Parameter Spaces for Gorenstein Ideals, The Curves Seminar at Queen’s, Vol. X (Kingston, ON, 1995), pp. 2–114 (1996)

  14. Harbourne, B.: Points in Good Position in \({\mathbb{P}^2}\), Zero-dimensional schemes (Ravello, 1992), pp. 213–229 (1994)

  15. Harbourne B., Schenck H., Seceleanu A.: Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property. J. Lond. Math. Soc. (2) 84(3), 712–730 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  17. Iarrobino A.: Compressed algebras: Artin algebras having given socle degrees and maximal length. Trans. Am. Math. Soc. 285(1), 337–378 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iarrobino A.: Inverse system of a symbolic power. III. Thin algebras and fat points. Compositio Math. 108(3), 319–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolesnikov, A., Sorokina, T.: Multivariate C 1-continuous splines on the Alfeld split of a simplex. http://www.math.utah.edu/~sorokina/alf.pdf, to appear in Approximation Theory XIV: San Antonio (2013)

  20. Laface A., Ugaglia L.: Standard classes on the blow-up of \({\mathbb{P}^n}\) at points in very general position. Comm. Algebra 40(6), 2115–2129 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lai, M-J., Schumaker, L.L.: Spline Functions on Triangulations, Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007)

  22. Lau W.: A lower bound for the dimension of trivariate spline spaces. Constr. Approx. 23(1), 23–31 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Migliore J., Miró-Roig R., Nagel U.: On the weak Lefschetz property for powers of linear forms. Algebra Number Theory 6(3), 487–526 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mourrain B., Villamizar N.: Homological techniques for the analysis of the dimension of triangular spline spaces. J. Symb. Comput. 50, 564–577 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nagata, M.: On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33:271–293 (1960/1961)

  26. Schenck H.: A spectral sequence for splines. Adv. Appl. Math. 19(2), 183–199 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schenck H., Stillman M.: A family of ideals of minimal regularity and the Hilbert series of \({C^r(\hat{\Delta})}\). Adv. Appl. Math. 19(2), 169–182 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schenck, H., Stillman, M.: Local cohomology of bivariate splines. J. Pure Appl. Algebra 117/118:535-548. Algorithms for algebra (Eindhoven, 1996) (1997)

  29. Shan, J.: Dimension of C 2 trivariate splines on cells. http://www.math.uiuc.edu/~shan15/Spline.pdf, to appear in Approximation Theory XIV: San Antonio (2013)

  30. Ženíšek A.: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7, 334–351 (1973)

    Article  MATH  Google Scholar 

  31. Zlámal M.: On the finite element method. Numer. Math. 12, 394–409 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Villamizar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourrain, B., Villamizar, N. Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach. Math.Comput.Sci. 8, 157–174 (2014). https://doi.org/10.1007/s11786-014-0187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0187-8

Keywords

Mathematics Subject Classification

Navigation