Skip to main content
Log in

On Computing the Convex Hull of (Piecewise) Curved Objects

Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We utilize support functions to transform the problem of constructing the convex hull of a finite set of curved objects into the problem of computing the upper envelope of piecewise linear functions. This approach is particularly suited if the objects are (possibly intersecting) circular arcs in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Aichholzer O., Alt H., Rote G.: Matching shapes with a reference point. Int. J. Comput. Geom. Appl. 7, 349–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer O., Aurenhammer F., Hackl T., Jüttler B., Oberneder M., Šír Z.: Computational and structural advantages of circular boundary representation. Int. J. Computat.Geom. Appl. 21, 47–69 (2011)

    Article  MATH  Google Scholar 

  3. Alt H., Cheong O., Vigneron A.: The Voronoi diagram of curved objects. Discret. Comput. Geom. 34, 439–453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurenhammer F.: Power diagrams: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bajaj C.L., Kim M.-S.: Convex hulls of objects bounded by algebraic curves. Algorithmica 6, 533–553 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boissonnat J.-D., Cerezo A., Devillers O., Duquesne J., Yvinec M.: An algorithm for constructing the convex hull of a set of spheres in dimension d. Comput. Geom. Theory Appl. 6, 123–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boissonnat, J.-D., Delage, C.: Convex hull and Voronoi diagram of additively weighted points. In: Proceedings 13th European Symposium on Algorithms, vol. 3669, pp. 367–378, Springer LNCS (2005)

  8. Boissonnat, J.-D., Karavelas, M.: On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In: Proceedings 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 305–312, (2003)

  9. Dobkin D.P., Souvaine D.L.: Computational geometry in a curved world. Algorithmica 5, 421–457 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh P.K., Kumar K.V.: Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vision Image Underst. 72, 397–403 (1998)

    Article  Google Scholar 

  11. Graham R.: An efficient algorithm for determining the convex hull of a finite point set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  12. Gruber P.M., Wills J.M.: Handbook of Convex Geometry. Elsevier, North-Holland, Amsterdam (1993)

    Google Scholar 

  13. Jarvis R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2, 18–21 (1973)

    Article  MATH  Google Scholar 

  14. Kirkpatrick D.G., Seidel R.: The ultimate planar convex hull algorithm?. SIAM J. Comput. 15, 287–299 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li Z., Meek D.S.: Smoothing an arc spline. Comput. Graph. 29, 576–587 (2005)

    Article  Google Scholar 

  16. Melkman A.: On-line construction of the convex hull of a simple polygon. Inf. Process. Lett. 25, 11–12 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nielsen F., Yvinec M.: An output-sensitive convex hull algorithm for planar objects. Int. J. Comput. Geom. Appl. 8, 39–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Piegl L.A., Tiller W.: Biarc approximation of NURBS curves. Comput. Aided Des. 34, 807–814 (2002)

    Article  Google Scholar 

  19. Prince J.R., Willsky A.S.: Reconstructing convex sets from support line measurements. IEEE Trans. Pattern Anal. Mach. Intell. 12, 377–389 (1990)

    Article  Google Scholar 

  20. Rappaport D.: A convex hull algorithm for discs, and applications. Comput. Geom. Theory Appl. 1, 171–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Richardson T.J.: Approximation of planar convex sets from hyperplanes probes. Discret. Comput. Geom. 18, 151–177 (1997)

    Article  MATH  Google Scholar 

  22. Schäffer A.A., Van Wyk C.J.: Convex hulls of piecewise-smooth Jordan curves. J. Algorithms 8, 66–94 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharir M., Agarwal P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  24. Yue Y., Murray J.L., Corney J.R., Clark D.E.R.: Convex hull of a planar set of straight and circular line segments. Eng. Comput. 16, 858–875 (1999)

    Article  MATH  Google Scholar 

  25. Yap C.K.: An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discret. Comput. Geom. 2, 365–393 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Aurenhammer.

Additional information

This work was supported by the FWF Joint Research Project ‘Industrial Geometry’, S9205-N12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurenhammer, F., Jüttler, B. On Computing the Convex Hull of (Piecewise) Curved Objects. Math.Comput.Sci. 6, 261–266 (2012). https://doi.org/10.1007/s11786-012-0111-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-012-0111-z

Keywords

Mathematics Subject Classification

Navigation