Skip to main content
Log in

Cauchy–Kovalevskaya Extension Theorem in Fractional Clifford Analysis

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we establish the fractional Cauchy–Kovalevskaya extension (\(\textit{FCK}\)-extension) theorem for fractional monogenic functions defined on \(\mathbb {R}^d\). Based on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous polynomials, are introduced. We studied the connection between the \(\textit{FCK}\)-extension of functions of the form \(x^\alpha P_l\) and the classical Gegenbauer polynomials. Finally we present two examples of \(\textit{FCK}\)-extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Encyclopedia of Mathematics and Its Applications. Special functions, vol. 17. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Brackx, F., De Schepper, H., Lávička, R., Souček, V.: The Cauchy–Kovalevskaya extension theorem in Hermitian Clifford analysis. J. Math. Anal. Appl. 381(2), 649–660 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brackx, F., Delanghe, R., Sommen, F.: Research Notes in Mathematics. Clifford analysis, vol. 76, Pitman Advanced Publishing Program, Boston (1982)

    Google Scholar 

  4. Cauchy, A.: Oeuvres Complètes. Série 1-Tome VII. Gauthier-Villars, Paris, pp. 17–58 (1882–1974)

  5. Delanghe, R., Sommen, F., Souc̆ek, V.: Clifford algebras and spinor-valued functions. A function theory for the Dirac operator. In: Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1992)

  6. De Knock, B., Peña-Peña, D., Sommen, F.: On the CK-extension for a special overdetermined system in complex Clifford analysis. In: Sabadini, I., et al. (eds.) Trends in Mathematics: Hypercomplex Analysis, pp. 115–124. Birkhäuser, Basel (2009)

    Google Scholar 

  7. De Ridder, H.: Discrete Clifford analysis: function theory and integral transforms. PhD Thesis, University of Gent (2013)

  8. De Ridder, H., De Schepper, H., Sommen, F.: The Cauchy–Kovalevskaya extension theorem in discrete Clifford analysis. Commun. Pure Appl. Anal. 10(4), 1097–1109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. De Schepper, N., Sommen, F.: Cauchy–Kowalevski extensions and monogenic plane waves using spherical monogenics. Bull. Braz. Soc. 44(2), 321–350 (2013)

    Article  MATH  Google Scholar 

  10. Goldfain, E.: Complexity in quantum field theory and physics beyond the standard model. Chaos Solitons Fractals 28(4), 913–922 (2006)

    Article  MATH  Google Scholar 

  11. Kähler, U., Vieira, N.: Fractional Fischer decomposition in Clifford analysis, hypercomplex analysis: new perspectives and applications. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds.) Trends in Mathematics. Birkhäuser, Basel (in press)

  12. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  13. Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichungen. J. Reine Angew. Math. 80, 1–32 (1875)

    MATH  Google Scholar 

  14. Li, M.F., Ren, J.R., Zhu, T.: Fractional Vector Calculus and Fractional Special Function (2010). arXiv:1001.2889v1

  15. Malonek, H., Peña-Peña, D., Sommen, F.: A Cauchy–Kowalevski theorem for inframonogenic functions. Math. J. Okayama Univ. 53, 167–172 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Roberts, M.D.: Fractional Derivative Cosmology (2009). arXiv:0909.1171v1

  17. Tarasov, V.E.: Fractional vector calculus and fractional Maxwells equations. Ann. Phys. 323(11), 2756–2778 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

N. Vieira was supported by Portuguese funds through the CIDMA—Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT—Fundação para a Ciência e a Tecnologia”), within project PEst-OE/MAT/UI4106/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vieira.

Additional information

Communicated by Fabrizio Colombo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, N. Cauchy–Kovalevskaya Extension Theorem in Fractional Clifford Analysis. Complex Anal. Oper. Theory 9, 1089–1109 (2015). https://doi.org/10.1007/s11785-014-0395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0395-x

Keywords

Mathematics Subject Classification (2010)

Navigation