Skip to main content
Log in

Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

We investigated phytotoxicity in seven plant species exposed to a range of concentrations (0–500 mg·kg−1 soil) of di-n-butyl phthalate (DnBP) or bis (2-ethylhexyl) phthalate (DEHP), two representative phthalate esters (PAEs) nominated by USEPA as priority pollutants and known environmental estrogens. We studied seed germination, root elongation, seedling growth, biomass (fresh weight, FW) and malondialdehyde (MDA) content of shoots and roots of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), perennial ryegrass (Lolium perenne), radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), oat (Avena sativa) and onion (Allium cepa L.), together with monitoring of plant pigment content (chlorophyll a, b and carotinoids) in alfalfa, radish and onion shoots. Root elongation, seedling growth and biomass of the test species were generally inhibited by DnBP but not by DEHP, indicating a lower level of phytotoxicity of DEHP than of DnBP. MDA contents of four species were promoted by PAE exposure, but not in alfalfa, ryegrass or onion shoots, indicating lower sensitivity of these three species to PAE pollutants. Plant pigment contents were clearly affected under the stress of both pollutants, implying the potential damage to the photosynthetic system of test plants, mainly by decreasing the content of chlorophyll a and b. Results of DnBP and DEHP phytotoxicity to the primary growth of test plants has provided information for the assessment of their environmental risk in the soil and also forms a basis for the further analysis of their toxic effects over the whole growth period of different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scholz N. Ecotoxicity and biodegradation of phthalate monoesters. Chemosphere, 2003, 53(8): 921–926

    Article  CAS  Google Scholar 

  2. Liu W L, Shen C F, Zhang Z, Zhang C B. Distribution of phthalate esters in soil of e-waste recycling sites from Taizhou city in China. Bulletin of Environmental Contamination and Toxicology, 2009, 82(6): 665–667

    Article  CAS  Google Scholar 

  3. Zeng F, Cui K Y, Xie Z Y, Wu L N, Luo D L, Chen L X, Lin Y J, Liu M, Sun G X. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. Journal of Hazardous Materials, 2009, 164(2–3): 1171–1178

    Article  CAS  Google Scholar 

  4. Vikelsøe J, Thomsen M, Carlsen L. Phthalates and nonylphenols in profiles of differently dressed soils. Science of the Total Environment, 2002, 296(1–3): 105–116

    Article  Google Scholar 

  5. Gibson R, Wang M J, Padgett E, Beck A J. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere, 2005, 61(9): 1336–1344

    Article  CAS  Google Scholar 

  6. Hu X X, Han Z H, Liu B Y, Zhang F B, Li F, Wang W H. Distribution of phthalic acid esters in environment and its toxicity. Environmental Science and Management, 2007, 32(1): 37–40

    CAS  Google Scholar 

  7. Schowanek D, Carr R, David H, Douben P, Hall J, Kirchmann H, Patria L, Sequi P, Smith S, Webb S. A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture—Conceptual Framework. Regulatory Toxicology and Pharmacology, 2004, 40(3): 227–251

    Article  CAS  Google Scholar 

  8. Chang L W, Meier J R, Smith M K. Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Archives of Environmental Contamination and Toxicology, 1997, 32(2): 166–171

    Article  CAS  Google Scholar 

  9. An Q, Jin W, Li Y, Xu R W. Influence of plasticizer PAEs to the soil-plant system. Acta Pedologica Sinica, 1999, 2(1): 118–126 (in Chinese)

    Google Scholar 

  10. Yin R, Lin X G, Wang S G, Zhang H Y. Influence of phthalic acid esters in vegetable garden soil on quality of capsicum fruit. Agro-Environmental Protection, 2002, 21(1): 1–4 (in Chinese)

    Google Scholar 

  11. Liao C S, Yen J H, Wang Y S. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate. Journal of Hazardous Materials, 2009, 163(2–3): 625–631

    Article  CAS  Google Scholar 

  12. US Environmental Protection Agency. 1996. Ecological Effects Test Guidelines (OPPTS 850.4200): Seed Germination / Root Elongation Toxicity Test. Available from: http://www.epa.gov/opptsfrs/publications/OPPTSHarmonized/850EcologicalEffectsTestGuidelines/Drafts/850-4200.pdf

    Google Scholar 

  13. Wang X D, Sun C, Gao S X, Wang L S, Shuokui H. Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 2001, 44(8): 1711–1721

    Article  CAS  Google Scholar 

  14. Zhang C G, Leung K K, Wong Y S, Tam N F Y. Germination, growthand physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environmental and Experimental Botany, 2007, 60(1): 127–136

    Article  CAS  Google Scholar 

  15. Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophyls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983, 603(11): 591–592

    Google Scholar 

  16. Wang W, Keturi P H. Comparative seed germination tests using ten plant species for toxicity assessment of metals engraving effluent sample. Water, Air, and Soil Pollution, 1990, 52(3–4): 369–376

    Article  CAS  Google Scholar 

  17. Kordan H A. Seed viability and germination: a multi-purpose experimental system. Journal of Biological Education, 1992, 26(4): 247–251

    Article  Google Scholar 

  18. Moore M T, Huggett D B, Huddleston G M III, Rodgers J H Jr, Cooper C M. Herbicide effects on Typha latifolia (Linneaus) germination and root and shoot development. Chemosphere, 1999, 38(15): 3637–3647

    Article  CAS  Google Scholar 

  19. Munzuroglu O, Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 2002, 43(2): 203–213

    Article  CAS  Google Scholar 

  20. Murata M R, Hammes P S, Zharare G E. Effect of solution pH and calcium concentration on germination and early growth of groundnut. Journal of Plant Nutrition, 2003, 26(6): 1247–1262

    Article  CAS  Google Scholar 

  21. Lin D H, Xing B S. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 2007, 150(2): 243–250

    Article  CAS  Google Scholar 

  22. Zheng Z, He P J, Shao L M, Lee D J. Phthalic acid esters in dissolved fractions of landfill leachates. Water Research, 2007, 41(20): 4696–4702

    Article  CAS  Google Scholar 

  23. Xu X R, Li X Y. Adsorption behavior of dibutyl phthalate on marine sediments. Marine Pollution Bulletin, 2008, 57(6–12): 430–408

    Google Scholar 

  24. Shiota K, Chou M J, Nishimura H. Embryotoxic effects of di-2-ethylhexyl phthalate (DEHP) and di-n-buty phthalate (DBP) in mice. Environmental Research, 1980, 22(1): 245–253

    Article  CAS  Google Scholar 

  25. Defoe D L, Holcombe G W, Hammermeister D E, Biesinger K E. Solubility and toxicity of eight phthalate esters to four aquatic organisms. Environmental Toxicology and Chemistry, 1990, 9(5): 623–636

    Article  CAS  Google Scholar 

  26. Staples C A, Adams W J, Parkerton T F, Gorsuch J W, Biddinger G R, Reinert K H. Aquatic toxicity of eighteen phthalate esters. Environmental Toxicology and Chemistry, 1997, 16(5): 875–891

    Article  CAS  Google Scholar 

  27. Roslev P, Vorkamp K, Aarup J, Frederiksen K, Nielsen P H. Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 2007, 41(5): 969–976

    Article  CAS  Google Scholar 

  28. Liu Y, Guan Y T, Yang Z H, Cai Z H, Mizuno T, Tsuno H, Zhu W P, Zhang X H. Toxicity of seven phthalate esters to embryonic development of the abalone Haliotis diversicolor supertexta. Ecotoxicology (London, England), 2009, 18(3): 293–303

    Article  CAS  Google Scholar 

  29. Santibáñez C, Verdugo C, Ginocchio R. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Science of the Total Environment, 2008, 395(1): 1–10

    Article  CAS  Google Scholar 

  30. Story K B. Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Research, 2006, 29(12): 1715–1733

    Google Scholar 

  31. Jones G J, Nichols P D, Johns B, Smith J D. The effect of mercury and cadmiumon the fatty acid and sterol composition of the marine diatom Asterionella glacialis. Phytochemistry, 1987, 26(5): 1343–1348

    Article  CAS  Google Scholar 

  32. Gupta M, Sinha S, Chandra P. Copper-induced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH. Ecotoxicology (London, England), 1996, 5(1): 23–33

    Article  CAS  Google Scholar 

  33. Singh S, Eapen S, D’Souza S F. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, 2006, 62(2): 233–246

    Article  CAS  Google Scholar 

  34. Zou T J, Li T X, Zhang X Z, Yu H Y, Luo H B. Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. Journal of Hazardous Materials, 2011, 186(1): 683–689

    Article  CAS  Google Scholar 

  35. Wang S H, Yang Z M, Lu B, Li S Q, Lu Y P. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 2004, 45: 203–212 (in Chinese)

    CAS  Google Scholar 

  36. Song N H, Yin X L, Chen G F, Yang H. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere, 2007, 68(9): 1779–1787

    Article  CAS  Google Scholar 

  37. Fábregas J, Domínguez A, Álvarez D G, Lamela T, Otero A. García álvarez D, Lamela T, Otero A. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnology Letters, 1998, 20(6): 623–626

    Article  Google Scholar 

  38. Mascher R, Lippmann B, Holzinger S, Bergmann H. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Science, 2002, 163(5): 961–969

    Article  CAS  Google Scholar 

  39. Lagriffoul A, Mocquot B, Mench M, Vangronsveld J. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil, 1998, 200(2): 241–250

    Article  CAS  Google Scholar 

  40. Ralph P J. Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquatic Botany, 2000, 66(2): 141–152

    Article  CAS  Google Scholar 

  41. Sinha S, Saxena R, Singh S. Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environmental Monitoring and Assessment, 2002, 80(1): 17–31

    Article  CAS  Google Scholar 

  42. Aslan M, Unlü M Y, Türkmen N, Yilmaz Y Z. Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatica L. Bulletin of Environmental Contamination and Toxicology, 2003, 71(2): 323–329

    Article  CAS  Google Scholar 

  43. Vange V, Heuch I, Vandvik V. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods. Acta Oecologica, 2004, 25(3): 169–178

    Article  Google Scholar 

  44. Dolan R W. The effect of seed size and maternal source on individual size in a population of Ludwigia leptocarpa (Onagraceae). American Journal of Botany, 1984, 71(9): 1302–1307

    Article  Google Scholar 

  45. Stanton M L. Seed variation in wild radish: effect of seed size on components of seedling and adult fitness. Ecology, 1984, 65(4): 1105–1112

    Article  Google Scholar 

  46. Winn A A. Ecological and evolutionary consequences of seed size in Prunella vulgaris. Ecology, 1988, 69(5): 1537–1544

    Article  Google Scholar 

  47. Houssard C, Escarré J. The effects of seed weight on growth and competitive ability of Rumex acetosella from two successional oldfields. Oecologia, 1991, 86(2): 236–242

    Article  Google Scholar 

  48. Simons A M, Johnston M O. Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. American Journal of Botany, 2000, 87(1): 124–132

    Article  CAS  Google Scholar 

  49. Wulff R D. Seed size variation in Desmodium paniculatum. II. Effects on seedling growth and physiological performance. Journal of Ecology, 1986, 74(1): 99–114

    Article  Google Scholar 

  50. Vaughton G, Ramsey M. Relationships between seed mass, seed nutrients, and seedling growth in Banksia cunninghamii (Proteaceae). International Journal of Plant Sciences, 2001, 162(3): 599–606

    Article  CAS  Google Scholar 

  51. George N C, Sands J E. The control of seed germination by moisture as a soil physical property. Australian Journal of Agricultural Research, 1959, 10(5): 628–636

    Article  Google Scholar 

  52. Come D. Obstacles to germination. Monographies de Physiologie Vegetale, 1970, 6: 162

    Google Scholar 

  53. Takemoto B K, Noble R D. Differential sensitivity of duckweeds (Lemnaceae) to sulphite. I. Carbon assimilation and frond replication rate as factors influencing sulphite phytotoxicity under low and high irradiance. New Phytologist, 1986, 103(3): 525–539

    Article  CAS  Google Scholar 

  54. Ait B, Audran J C. Response of champenoise grapevine to low temperatures: Changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. Journal of Horticultural Science, 1987, 72(4): 577–582

    Google Scholar 

  55. Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91(2 Spec No): 179–194

    Article  CAS  Google Scholar 

  56. Shaharuddin N A, Kawamura F, Sulaiman O, Hashim R. Evaluation on antioxidant activity, antifungal activity and total phenolic of selected commercial Malaysian timbers. In: Proceedings of International Conference on Environmental Research and Technology. Penang Malaysia: Press of the National University of Malaysia, 2008, 970–974

    Google Scholar 

  57. Posmyk M M, Kontek R, Janas K M. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 2009, 72(2): 596–602

    Article  CAS  Google Scholar 

  58. Sgherri C, Cosi E, Navari-Izzo F. Phenols and antioxidative status of Raphanus sativus grown in copper excess. Plant Physiology, 2003, 118(1): 21–28

    Article  CAS  Google Scholar 

  59. Terry N. Limiting factors in photosynthesis. 1. Use of iron stress to control photochemical capacity in vivo. Plant Physiology, 1980, 65(1): 114–120

    Article  CAS  Google Scholar 

  60. Manthey J A, Crowley D E. Leaf and root responses to iron deficiency in avocado. Journal of Plant Nutrition, 1997, 20(1): 683–693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Teng, Y., Christie, P. et al. Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate. Front. Environ. Sci. Eng. 9, 259–268 (2015). https://doi.org/10.1007/s11783-014-0652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0652-2

Keywords

Navigation