Skip to main content
Log in

Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

In practice, airborne gravimetry is a sub-Nyquist sampling method because of the restrictions imposed by national boundaries, financial cost, and database size. In this study, we analyze the sparsity of airborne gravimetry data by using the discrete Fourier transform and propose a reconstruction method based on the theory of compressed sensing for large-scale gravity anomaly data. Consequently, the reconstruction of the gravity anomaly data is transformed to a L1-norm convex quadratic programming problem. We combine the preconditioned conjugate gradient algorithm (PCG) and the improved interior-point method (IPM) to solve the convex quadratic programming problem. Furthermore, a flight test was carried out with the homegrown strapdown airborne gravimeter SGA-WZ. Subsequently, we reconstructed the gravity anomaly data of the flight test, and then, we compared the proposed method with the linear interpolation method, which is commonly used in airborne gravimetry. The test results show that the PCG-IPM algorithm can be used to reconstruct large-scale gravity anomaly data with higher accuracy and more effectiveness than the linear interpolation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baye, R., 2002, Airborne gravity measurements over mountainous areas by using a LaCoste & Romberg airsea gravity meter: Geophysics, 67(3), 807–816.

    Article  Google Scholar 

  • Boyd, S., and Vandenberghe, L., 2004, Duality, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.

    Chapter  Google Scholar 

  • Boyd, S., and Vandenberghe, L., 2004, Interior-point methods, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.

    Chapter  Google Scholar 

  • Cai, R., Zhao, Q., She, D. P., Yang, L., Cao, H., and Yang, Q. Y., 2014, Bernoulli-based random under-sampling schemes for 2D seismic data regularization: Applied Geophysics, 11(3), 321–330.

    Article  Google Scholar 

  • Cai, S. K., Zhang, K. D., Wu, M. P., and Huang, Y. M., 2013, The first airborne scalar gravimetry system based on SINS/DGPS in China: Science China Earth Sciences, 56(12), 2198–2208.

    Article  Google Scholar 

  • Candès, E., and Romberg, J., 2006, Quantitative robust uncertainty principles and optimally sparse decompositions: Found. Comput. Math., 6(2), 227–254.

    Article  Google Scholar 

  • Candès, E., and Tao, T., 2006, Near optimal signal recovery from random projections: Universal encoding strategies: IEEE Trans. Inf. Theory, 52(12), 5406–5425.

    Article  Google Scholar 

  • Candès, E., Romberg, J., and Tao, T., 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE Trans. Inf. Theory, 52(2), 489–509.

    Article  Google Scholar 

  • Candès, E., Romberg, J., and Tao, T., 2006, Stable signal recovery from incomplete and inaccurate measurements: Commun. Pure Appl. Math., 59(8), 1207–1223.

    Article  Google Scholar 

  • Daubechies, I., Defrise, M., and Demol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57, 1413–1541.

    Article  Google Scholar 

  • Davenport, M., Duarte, M., Eldar, Y. C., and Kutyniok, G., 2012, Introduction to compressed sensing, In Eldar, Y. C., and Kutyniok, G., Eds., Compressed Sensing: Theory and Applications: Cambridge University Press.

    Google Scholar 

  • Donoho, D. L., 2006, Compressed sensing: IEEE Trans. Inf. Theory, 52(4), 1289–1306.

    Article  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., 2004, Least angle regression: Annals of Statistics, 32(2), 407–499.

    Article  Google Scholar 

  • Elad, M., Matalon, B., and Zibulevsky, M., 2006, Image denoising with shrinkage and redundant representations: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogn (CVPR), New York, USA, 1924–1931.

    Google Scholar 

  • Figueiredo, M., and Nowak, R., 2005, A bound optimization approach to wavelet-based image deconvolution: Proceedings of IEEE International Conference on Image Processing (ICIP), Genoa, Italy, 782–785.

    Google Scholar 

  • Hong, S., 2005, Observability of error states in GPS/INS integration: IEEE Transactions on vehicular technology, 54(2), 731–743.

    Article  Google Scholar 

  • Huang, Y. M., Olesen, A. V., Wu, M. P., and Zhang, K. D., 2012, SGA-WZ: A new strapdown airborne gravimeter: Sensors, 12, 9336–9348.

    Article  Google Scholar 

  • Johnson, C., Seidel, J., and Sofer, A., 2000, Interior point methodology for 3-D PET reconstruction: IEEE Trans. Med. Imag., 19(4), 271–285.

    Article  Google Scholar 

  • Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large-scale l1-regularized least squares: IEEE J. Sel. Top. Signal Process, 1(4), 606–617.

    Article  Google Scholar 

  • Koh, K., Kim, S. J., and Boyd, S., 2007, An interior-point method for L1-regularized logistic regression: J. Mach. Learning Res., 8, 1519–1555.

    Google Scholar 

  • Nettleton, L. L., LaCoste, L., and Harrison, J. C., 1960, Test of an airborne gravity meter: Geophysics, 25(1), 181–202.

    Article  Google Scholar 

  • Nyquist, H., 1928, Certain topics in telegraph transmission theory: Trans. AIEE, 47, 617–644.

    Google Scholar 

  • Osborne, M., Presnell, B., and Turlach, B., 2000, A new approach to variable selection in least squares problems: IMA Journal of Numerical Analysis, 20(3), 389–403.

    Article  Google Scholar 

  • Shannon, C., 1949, Communication in the presence of noise: Proc. Inst. Radio Eng., 37(1), 10–21.

    Google Scholar 

  • Thompson, L., and LaCoste, L., 1960, Aerial gravity measurements: J. Geophys. Res., 65(1), 305–322.

    Article  Google Scholar 

  • Vandenberghe, L., and Boyd, S., 1995, A primal-dual potential reduction method for problems involving matrix inequalities: Mathemat. Program., 69, 205–236.

    Google Scholar 

  • Verdun, J., and Klingele, E. E., 2003, The alpine Swiss-French airborne gravity survey: Geophysical Journal International, 152(1), 8–19.

    Article  Google Scholar 

  • Verdun, J., and Klingele, E. E., 2005, Airborne gravimetry using a strapped-down LaCoste and Romberg air/sea gravity meter system: a feasibility study: Geophysical Prospecting, 53(1), 91–101.

    Article  Google Scholar 

  • Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An iterative curvelet thresholding algorithm for seismic random noise attenuation: Applied Geophysics, 7(4), 315–324.

    Article  Google Scholar 

  • Wang, L. H., Zhang, C. D., and Wang, J. Q., 2008, Mathematical models and accuracy evaluation for the airborne gravimetry: J. Geom. Sci. Technol., 25, 68–71.

    Google Scholar 

  • Xia, Z., and Sun, Z. M., 2006, The technology and application of airborne gravimetry: Sci. Surv. Mapp., 31, 43–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Ping Wu.

Additional information

The research is supported by the National High Technology Research and Development Program of China (No. SS2013AA060402).

Yang Ya-Peng, Ph.D. student, College of Mechatronics and Automation, National University of Defense Technology. His main research interests are airborne gravimetry, compressed sensing, and integrated navigation technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YP., Wu, MP. & Tang, G. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming. Appl. Geophys. 12, 147–156 (2015). https://doi.org/10.1007/s11770-015-00481-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-015-00481-5

Keywords

Navigation