Skip to main content
Log in

New approach to emulate SEU faults on SRAM based FPGAS

  • Published:
Journal of Electronics (China)

Abstract

Field Programmable Gate Arrays (FPGAs) offer high capability in implementing of complex systems, and currently are an attractive solution for space system electronics. However, FPGAs are susceptible to radiation induced Single-Event Upsets (SEUs). To insure reliable operation of FPGA based systems in a harsh radiation environment, various SEU mitigation techniques have been provided. In this paper we propose a system based on dynamic partial reconfiguration capability of the modern devices to evaluate the SEU fault effect in FPGA. The proposed approach combines the fault injection controller with the host FPGA, and therefore the hardware complexity is minimized. All of the SEU injection and evaluation requirements are performed by a soft-core which realized inside the host FPGA. Experimental results on some standard benchmark circuits reveal that the proposed system is able to speed up the fault injection campaign 50 times in compared to conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Samudrala, J. Ramos, and S. Katkoori. Selective triple modular redundancy (STMR) based singleevent upset (SEU) tolerant synthesis for FPGAs. IEEE Transactions on Nuclear Science, 51(2004)5, 2957–2969.

    Article  Google Scholar 

  2. L. Sterpone and M. Violante. Analysis of the robustness of the TMR architecture in SRAM-based FPGAs. IEEE Transactions on Nuclear Science, 52 (2005)5, 1545–1549.

    Article  Google Scholar 

  3. L. Sterpone and M. Violante. A new reliabilityoriented place and route algorithm for SRAM-based FPGAs. IEEE Transactions on Computers, 55(2006)6, 732–744.

    Article  Google Scholar 

  4. B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, and M. Wirthlin. Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Transactions on Nuclear Science, 55(2008)4, 2274–2280.

    Article  Google Scholar 

  5. K. Xing, J. Yang, C. Zhang, and W. He. Single event upset induced multi-block error and its mitigation strategy for SRAM-based FPGA. Science China Technological Sciences, 54(2011)10, 2657–2664.

    Article  Google Scholar 

  6. M. Portela-Garcia, A. Lindoso, L. Entrena, M. Garcia-Valdera, C. Lopez-Ongil, N. Marroni, B. Pianta, L. B. Poehls, and F. Vargas. Evaluating the effectiveness of a software-based technique under SEEs using FPGA-based fault injection approach. Journal of Electronic Testing, 27(2012)5, 627–633.

    Google Scholar 

  7. A. Ejlali and S. Ghassem Miremadi. FPGA-based fault injection into switch-level models. Microprocessors and Microsystems, 28(2004)5/6, 317–327.

    Article  Google Scholar 

  8. H. R. Zarandi and S. G. Miremadi. Dependability evaluation of Altera FPGA-based embedded systems subjected to SEUs. Microelectronics Reliability, 47 (2007)2/3, 461–470.

    Article  Google Scholar 

  9. L. Sterpone and M. Violante. A new analytical approach to estimate the effects of SEUs in TMR architectures implemented through SRAM-based FPGAs. IEEE Transactions on Nuclear Science, 52 (2005)6, 2217–2223.

    Article  Google Scholar 

  10. L.-O. Celia, G.-V. Mario, P.-G. Marta, and E. Luis. Autonomous fault emulation: a new FPGA based acceleration system for hardness evaluation. IEEE Transactions on Nuclear Science, 54(2007)1, 252–261.

    Article  Google Scholar 

  11. P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan, B. H. Pratt, H. M. Quinn, and M. J. Wirthlin. SRAM FPGA reliability analysis for harsh radiation environments. IEEE Transactions on Nuclear Science, 56(2009)6, 3519–3526.

    Article  Google Scholar 

  12. P. Schumacher. WP414: SEU emulation environment. Xilinx Corp. technical document, San Jose, CA, USA, Xilinx Inc., 2012.

    Google Scholar 

  13. Brendan Bridgford, Carl Carmichael, and C. W. Tseng. Single event upset mitigation selection guide. Xilinx Corp. application document, San Jose, CA, USA, Xilinx Inc., 2008.

    Google Scholar 

  14. K. Chapman. SEU strategies for Virtex-5 devices. Xilinx Corp. technical document, San Jose, CA, USA, Xilinx Inc., 2011.

    Google Scholar 

  15. U. Legat, A. Biasizzo, and F. Novak. A compact AES core with on-line error-detection for FPGA applications with modest hardware resources. Microprocessors and Microsystems, 35(2011)4, 405–416.

    Article  Google Scholar 

  16. R. L. Shuler, B. L. Bhuva, P. M. O’Neill, J. W. Gambles, and S. Rezgui. Comparison of dual-rail and TMR logic cost effectiveness and suitability for FPGAs with reconfigurable SEU tolerance. IEEE Transactions on Nuclear Science, 56(2009)1, 214–219.

    Article  Google Scholar 

  17. K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin. A comparison of TMR with alternative fault-tolerant design techniques for FPGAs. IEEE Transactions on Nuclear Science, 54(2007)6, 2065–2072.

    Article  Google Scholar 

  18. R. O. Gosheblagh and K. Mohammadi. Designing and implementing a reliable thermal monitoring system based on 1-wire protocol on FPGA for a LEO satellite. Turkish Journal of Electrical Engineering & Computer Sciences, DOI: 10.3906/elk-1301-15, 2013.

    Google Scholar 

  19. S. F. Liu, G. Sorrenti, P. Reviriego, F. Casini, J. A. Maestro, and M. Alderighi. Increasing reliability of FPGA-based adaptive equalizers in the presence of single event upsets. IEEE Transactions on Nuclear Science, 58(2011)3, 1072–1077.

    Article  Google Scholar 

  20. M. A. Aguirre, J. N. Tombs, F. Muoz, V. Baena, H. Guzman, J. Napoles, A. Torralba, A. Fernandez-Leon, F. Tortosa-Lopez, and D. Merodio. Selective protection analysis using a SEU emulator: testing protocol and case study over the Leon2 processor. IEEE Transactions on Nuclear Science, 54(2007)4, 951–956.

    Article  Google Scholar 

  21. U. Legat, A. Biasizzo, and F. Novak. SEU recovery mechanism for SRAM based FPGAs. IEEE Transactions on Nuclear Science, 59(2012)5, 2562–2571.

    Article  Google Scholar 

  22. M. Straka, J. Kastil, Z. Kotasek, and L. Miculka. Fault tolerant system design and SEU injection based testing. Microprocessors and Microsystems, 37(2013)2, 155–173.

    Article  Google Scholar 

  23. E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin. Accelerator validation of an FPGA SEU simulator. IEEE Transactions on Nuclear Science, 50 (2003)6, 2147–2157.

    Article  Google Scholar 

  24. P. M. -H. Lee and R. Sedaghat. FPGA-based switchlevel fault emulation using module-based dynamic partial reconfiguration. Microelectronics Reliability, 48(2008)10, 1724–1733.

    Article  Google Scholar 

  25. J. M. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and M. A. Aguirre. FTUNSHADES2: a novel platform for early evaluation of robustness against SEE. 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Sevilla, Spain, September 2011, 169–174.

    Google Scholar 

  26. L. Sterpone and M. Violante. A new partial reconfigurationbased fault-injection system to evaluate SEU effects in SRAM-based FPGAs. IEEE Transactions on Nuclear Science, 54(2007)4, 965–970.

    Article  Google Scholar 

  27. A. Rohani and H. G. Kerkhoff. Rapid transient fault insertion in large digital systems. Microprocessors and Microsystems, 37(2013)2, 147–154.

    Article  Google Scholar 

  28. H. M. Quinn, P. S. Graham, M. J. Wirthlin, B. Pratt, K. S. Morgan, M. P. Caffrey, and J. B. Krone. A test methodology for determining space readiness of Xilinx SRAM based FPGA devices and designs. IEEE Transactions on Instrumentation and Measurement, 58(2009)10, 3380–3395.

    Article  Google Scholar 

  29. L. Antoni, R. Leveugle, and B. Feher. Using run-time reconfiguration for fault injection applications. IEEE Transactions on Instrumentation and Measurement, 52(2003)5, 1468–1473.

    Article  Google Scholar 

  30. C. I. Underwood. Observations of radiation in the space radiation environment and its effect on commercial off-the-shelf electronics in low-Earth orbit. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(2003)1802, 193–197.

    Article  Google Scholar 

  31. W. Lu and M. Radetzki. Concurrent and comparative fault simulation in SystemC and its application in robustness evaluation. Microprocessors and Microsystems, 37(2013)2, 115–128.

    Article  Google Scholar 

  32. S. Misera, H. T. Vierhaus, and A. Sieber. Simulated fault injections and their acceleration in SystemC. Microprocessors and Microsystems, 32(2008)5/6, 270–278.

    Article  Google Scholar 

  33. O. Goloubeva, M. Rebaudengo, O. Goloubeva, and M. Rebaudengo. Software-implemented Hardware Fault Tolerance. Springer, Berlin, Germany, 2006, 18–120.

    MATH  Google Scholar 

  34. B. Dutton, M. Ali, C. Stroud, and J. Sunwoo. Embedded processor based fault injection and SEU emulation for FPGAs. Proceedings of the International Conference on Embedded Systems and Applications, Las Vegas, Nevada, USA, July 2009, 183–189.

    Google Scholar 

  35. L. Sterpone, M. Violante, R. H. Sorensen, D. Merodio, F. Sturesson, R. Weigand, and S. Mattsson. Experimental validation of a tool for predicting the effects of soft errors in SRAM based FPGAs. IEEE Transactions on Nuclear Science, 54(2007)6, 2576–2583.

    Article  Google Scholar 

  36. M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D. M. Codinachs, S. Pastore, C. Poivey, G. R. Sechi, G. Sorrenti, and R. Weigand. Experimental validation of fault injection analyses by the FLIPPER tool. IEEE Transactions on Nuclear Science, 57(2010)4, 2129–2134.

    Article  Google Scholar 

  37. J. Tombs and M. A. Aguirre. FT-UNSHADES tool. Eurpe Space Agency Microelectronics Day, 2004.

    Google Scholar 

  38. L. Dongwoo and N. Jongwhoa. A novel simulation fault injection method for dependability analysis. IEEE Design & Test of Computers, 26(2009)6, 50–61.

    Article  Google Scholar 

  39. M. Alderighi, F. Casini, M. Citterio, S. D’Angelo, M. Mancini, S. Pastore, G. R. Sechi, and G. Sorrenti. Using FLIPPER to predict proton irradiation results for VIRTEX 2 devices: a case study. IEEE Transactions on Nuclear Science, 56(2009)4, 2103–2110.

    Article  Google Scholar 

  40. UG071: Virtex-4 FPGA configuration user guide. Xilinx technical documents, San Jose, CA, USA, Xilinx Inc.

  41. S. Schirrmann. User manual for Zefant-nanov4. Simplesolutions Corp. technical document, 2011.

    Google Scholar 

  42. UG632: PlanAhead user guide. Xilinx technical documents, San Jose, CA, USA, Xilinx Inc., 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Omidi Gosheblagh.

About this article

Cite this article

Gosheblagh, R.O., Mohammadi, K. New approach to emulate SEU faults on SRAM based FPGAS. J. Electron.(China) 31, 68–77 (2014). https://doi.org/10.1007/s11767-014-3122-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-014-3122-x

Key words

CLC index

Navigation