Skip to main content
Log in

Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive method using symmetric normal inverse Gaussian (NIG) parameters of the sub-bands of EEG signals calculated in the dual-tree complex wavelet transformation domain is proposed for classifying EEG data. The suitability of the NIG probability distribution function is illustrated using statistical measures. A support vector machine is employed as the classifier of the EEG signals, wherein the NIG parameters are used as features. The performance of the proposed method is studied using a publicly available benchmark EEG database for various classification cases that include healthy, inter-ictal (seizure-free interval) and ictal (seizure), non-seizure and seizure, healthy and seizure, and inter-ictal and ictal, and compared with that of several recent methods. It is shown that in almost all the cases, the proposed method can provide 100 % accuracy with 100 % sensitivity and 100 % specificity while being faster as compared to the time–frequency analysis-based and EMD techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith, S.J.M.: EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry, 76 (Suppl II), ii2–ii7 (2005)

  2. Salam, M.T., Sawan, M., Nguyen, D.K.: Low-power implantable device for onset detection and subsequent treatment of epileptic seizures. J. Healthc. Eng. 1(5), 169–184 (2010)

    Article  Google Scholar 

  3. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16, 1135–1142 (2012)

    Article  Google Scholar 

  4. Liu, Y., Zhou, W., Yuan, Q., Chen, S.: Automatic seizure detection using wavelet transformation and SVM in long term intra-cranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6), 749–755 (2012)

    Article  Google Scholar 

  5. Shafiul Alam, S.M., Bhuiyan, M.I.H.: Detection of seizure and epilepsy using higherorder statistics in the EMD domain. IEEE J. Biomed. Health Inform. 17(2), 312–318 (2013)

    Article  Google Scholar 

  6. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)

  7. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 11(03), 288–295 (2007). Hindawi Publishing Corporation

    Google Scholar 

  8. Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 11(3), 288–295 (2007)

  9. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)

  10. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process. 8(7), 1323–1334 (2012)

  11. Subasi, A., Gursoy, M.I.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38(8), 10499–10505 (2011)

  12. Liang, S.F., Wang, H.C., Chang, W.L.: Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Process. 2010, article id. 853434, Hindawi Publishing Corporation (2010)

  13. Bedeeuzzaman, M.V., Farooq, O., Khan, Y.U.: Automatic seizure detection using higher order moments. In: Proceedings of International Conference on Recent Trends in Information, Telecommunication and Computer (2010)

  14. Guler, I., Ubeyli, E.D.: Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 11(2), 117–126 (2007)

  15. Nicolau, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 39, 202–209 (2012)

    Article  Google Scholar 

  16. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhay, S.: Automatic diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7, 401–408 (2012)

    Article  Google Scholar 

  17. Orhan, Umut, Hekim, Mahmut, Ozer, Mahmut: EEG signals classification using theK-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475–13481 (2011)

  18. Das, A.B., Bhuiyan, M.I.H., Alam, S.M.S.: A statistical method for automatic detection of seizure and epilepsy in the dual tree complex wavelet transform domain. In: IEEE International Conference on Informatics, Electronics and Vision, Bangladesh (2014)

  19. Das, A.B., Bhuiyan, M.I.H., Alam, S.M.S.: Statistical parameters in the dual tree complex wavelet transform domain for the detection of epilepsy and seizure. IEEE International Conference on Electrical Information and Communication Technology(EICT-2013), Bangladesh

  20. Chen, G.: Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst. Appl. 41, 2391–2394 (2014)

    Article  Google Scholar 

  21. Mert, A., Akan, A.: Detrended fluctuation thresholding for empirical mode decomposition based denoising. Digit. Signal Process. 32, 48–56 (2014)

    Article  Google Scholar 

  22. Selesnick, W., Baraniuk, R.G., Kingsbury, N.: The dual tree complex wavelet transform—a coherent framework for multiscale signal and image processing. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  23. Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.: Video denoising based on inter-frame statistical modeling of wavelet coefficients. IEEE Trans. Circuits Syst. Video Technol. 17(2), 187–198 (2007)

  24. Li, Y., Li, Y.: Symmetric normal inverse Gaussian and structural similarity based image denoising. In: Proceedings of multimedia and signal processing. Communications in computer and information science, vol 346, pp. 103–111. Springer, Heidelberg (2012)

  25. Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.: Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images. IET Image Process. 03(03), 147–162 (2009)

    Article  Google Scholar 

  26. Bhuiyan, M.I.H., Omair Ahmad, M., Swamy, M.N.S.: Wavelet-based image denoising with the normal inverse Gaussian prior and LMMSE estimator. IET Image Process. 02(4), 203–217 (2008)

  27. Hill, P.R., Achim, A.M., Bull, D.R., Al-Mualla, M.E.: Dual-tree complex wavelet coefficient magnitude modelling using the bivariate Cauchy Rayleigh distribution for image denoising. Signal Process. 105, 464–472 (2014)

  28. Anantrasirichai, N., Achim, A., Kingsbury, N.G., Bull, D.R.: Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Trans. Image Process. 22(6), 2398–2408 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yang, H., Guan, C., Ang, K.K., Wang, C.C., Phua, K.S., Yu, J.: Dynamic initiation and dual-tree complex wavelet feature-based classification of motor imagery of swallow EEG signals. In: Proceedings of international joint conference on neural networks (IJCNN) vol 56, pp. 1–6. IEEE, Brisbane (2012)

  30. Bal, U.: Dual tree complex wavelet transform based denoising of optical microscopy images. Biomed. Opt. Express 3(12), 3231–3239 (2012)

    Article  Google Scholar 

  31. EEG time series download page. http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3

  32. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 061907 (2001)

  33. Hanssen, A., Oigard, T.A.: The normal inverse Gaussian distribution as a flexible model or heavy-tailed processes. In: Proceedings of IEEE-EUEASIP Workshop on Non-linear Signals and Image processing (2001)

  34. Andresen, A., Koekebakker, S., Westgaard, S.: Modeling electricity forward prices using the multivariate normal inverse Gaussian distribution. J. Energy Mark. 3(3), 3–25 (2010)

  35. Zhang, Xin, Jing, Xili: Image denoising in contourlet domain based on a normal inverse Gaussian prior. Digit. Signal Process. 20, 1436–1439 (2010)

    Google Scholar 

  36. Zhou, Y., Wang, J.: Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled contourlet transform. IET Image Process. 6(8), 1136–1147 (2013)

    Article  Google Scholar 

  37. Vapnik, V.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

  38. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  39. MATLAB. http://www.mathworks.com/products/matlab/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Bijoy Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.B., Bhuiyan, M.I.H. & Alam, S.M.S. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. SIViP 10, 259–266 (2016). https://doi.org/10.1007/s11760-014-0736-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0736-2

Keywords

Navigation