Skip to main content
Log in

Motion-energy-based unequal error protection for H.264/AVC video bitstreams

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

An unequal error protection (UEP) technique based on motion information of video bitstreams compressed by H.264/AVC standard is proposed. Motion activities of macroblocks in a frame are analyzed, and those having high effects on the video performance are extracted. Suitable forward error-correcting codes with different rates are constructed according to the importance of macroblocks and frames. Simulation results show that the proposed technique significantly improves the video quality, while maintaining a similar overall code rate in comparison with other UEP techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(\mathrm{MV}_{32}=7.07, \mathrm{MV}_{265}=6.08\).

  2. If \(no\_hi\_imp> no\_lo\_imp\), the frame has high importance and vice versa.

  3. For all simulations, the code rate of EEP is set to 0.385.

References

  1. Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. Sel. Top. Signal Process. IEEE J. 1(99), 1–11 (2013)

    Google Scholar 

  2. Wu, Y., Kumar, S., Hu, F., Zhu, Y., Matyjas, J.: Cross-layer forward error correction scheme using raptor and RCPC codes for prioritized video transmission over wireless channels. Circuits Syst. Video Technol. IEEE Trans. 1(99), 1–14 (2014)

    Google Scholar 

  3. Luo, Z., Song, L., Zheng, S., Ling, N.: Raptor codes based unequal protection for compressed video according to packet priority. Multimed. IEEE Trans., 1–12 (2013)

  4. Xiao, J., Tillo, T., Lin, C., Zhao, Y.: Dynamic sub-GOP forward error correction code for real-time video applications. Multimed. IEEE Trans. 14(4), 1298–1308 (2012)

    Article  Google Scholar 

  5. Hsia, S.C., Hsu, W.C., Wu, S.R.: A fast rate-distortion optimization algorithm for H.264/AVC codec. J. Signal Image Video Process. 7(5), 939–949 (2013)

    Article  Google Scholar 

  6. He, J., Yang, F.: High-speed implementation of rate-distortion optimized quantization for H.264/AVC. J. Signal Image Video Process., 1–9 (2013)

  7. Perez, P., Garcia, N.: Lightweight multimedia packet prioritization model for unequal error protection. Consum. Electron. IEEE Trans. 57(1), 132–138 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gibson, J.: The Mobile Communications Handbook, 2nd edn. IEEE Press (1999)

  9. Lin, C., Tillo, T., Zhao, Y., Jeon, B.: Multiple description coding for H.264/AVC with redundancy allocation at macro block level. Circuits Syst. Video Technol. IEEE Trans. 21(5), 589–600 (2011)

    Article  Google Scholar 

  10. Qu, Q., Pei, Y., Modestino, J.: An adaptive motion-based unequal error protection approach for real-time video transport over wireless IP networks. Multimedia IEEE Trans. 8(5), 1033–1044 (2006)

    Article  Google Scholar 

  11. Obando, M., Freitas, W., Cavalcanti, F.: Video motion activity transmission with redundant antennas at the transmitter side. In: Comm., IEEE Latin-American Conference on, pp. 1–6 (2010)

  12. Malewar, A., Bahadarpurkar, A., Gadre, V.: A linear rate control model for better target buffer level tracking in H.264. J. Signal Image Video Process. 7(2), 275–286 (2013)

    Article  Google Scholar 

  13. Zeng, H., Cai, C., Ma, K.K.: Fast mode decision for H.264/AVC based on macroblock motion activity. Circuits Syst. Video Technol. IEEE Trans. 19(4), 491–499 (2009)

    Article  Google Scholar 

  14. Na, S., Kyung, C.M.: Activity-based motion estimation scheme for H.264 scalable video coding. Circ. Syst. Video Tech. IEEE Trans. 20(11), 1475–1485 (2010)

    Article  Google Scholar 

  15. Shanableh, T., Assaleh, K.: H.264/AVC motion vector concealment solutions using online and offline polynomial regression. J. Signal Image Video Process. 1(1), 1–8 (2013)

    Google Scholar 

  16. Pham, H., Vafi, S.: Unequal error protection of H.264/AVC video bitstreams based on data partitioning and motion information of slices. In: Signal Proc., Comm. and Computing, International Conference on, ICSPCC 2012. 4th IEEE, pp. 634–639 (2012)

  17. Wenger, S.: H.264/AVC over IP. Circ. Syst. Video Technol. IEEE Trans. 13(7), 645–656 (2003)

    Article  Google Scholar 

  18. Haralick, R.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979). doi:10.1109/PROC.1979.11328

    Article  Google Scholar 

  19. Haller, M., Krutz, A., Sikora, T.: Robust global motion estimation using motion vectors of variable size blocks and automatic motion model selection. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 737–740 (2010)

  20. Advanced Video Coding for Generic Audio Visual services. Telecommunication Standardization Sector of ITU (2009)

  21. Suehring, K.: H.264/AVC JM reference software. http://iphome.hhi.de/suehring/tml/download/. Retrieved Feb. 2, 2012

  22. Lin, S., Costello, D.: Error Control Coding, 2nd edn. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Dung Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.D., Vafi, S. Motion-energy-based unequal error protection for H.264/AVC video bitstreams. SIViP 9, 1759–1766 (2015). https://doi.org/10.1007/s11760-014-0641-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0641-8

Keywords

Navigation