Skip to main content
Log in

Some recent work on multivariate Gaussian Markov random fields

  • Invited Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Some recent work on conditional formulation of multivariate Gaussian Markov random fields is presented. The focus is on model constructions by compatible conditionals and coregionalization. Special attention is given to multivariate generalizations of univariate models. Beginning with univariate model constructions, a survey of key approaches to formulating multivariate extensions is presented. Two challenges in the formulation and implementation of multivariate models are highlighted: (1) entanglement of spatial and non-spatial components, and (2) enforcement for positivity condition. Managing the two challenges by decomposition, separation, and constrained parameterization is discussed. Also highlighted is the challenge of flexible modeling of (conditional) cross-spatial dependencies and, in particular, asymmetric cross-spatial dependencies. Interpretation of asymmetric cross-spatial dependencies is also discussed. A coregionalization framework which connects and unifies the various lines of model development is presented. The framework enables a systematic development of a broad range of models via linear and spatially varying coregionalization, respectively, with extensions to locally adaptive models. Formulation of multivariate models over variable-specific lattices is discussed. Selected models are illustrated with examples of Bayesian multivariate and spatiotemporal disease mapping. Potential applications of coregionalization models in imaging analysis, covariance modeling, dimension reduction, and latent variable analysis are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnard J, McCulloch R, Meng X (2000) Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Stat Sin 10:1281–1311

    MathSciNet  MATH  Google Scholar 

  • Banerjee S, Carlin PB, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data, 2nd edn. Chapman & Hall, New York

    MATH  Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. SIAM, Philodelphia

    Book  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J R Stat Soc Ser B 36:192–236

    MathSciNet  MATH  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1–21

    Article  MathSciNet  Google Scholar 

  • Besag J, Kooperberg C (1995) On conditional and intrinsic autoregressions. Biometrika 82(4):733–746

    MathSciNet  MATH  Google Scholar 

  • Botella-Rocamora P, Martinez-Beneito MA, Banerjee S (2015) A unifying modelling framework for highly multivariate disease mapping. Stat Med 34(9):1548–1559

    Article  MathSciNet  Google Scholar 

  • Brezger A, Fahrmeir L, Hennerfeind A (2007) Adaptive Gaussian Markov random fields with applications in human brain mapping. Appl Stat 56(3):327–345

    MathSciNet  Google Scholar 

  • Brewer MJ, Nolan AJ (2007) Variable smoothing in Bayesian intrinsic autoregressions. Environmentrics 18:841–857

    Article  MathSciNet  Google Scholar 

  • Brown PJ, Le ND, Zidek JV (1994) Multivariate spatial interpolation and exposure to air pollutants. Can J Stat 22(4):489–509

    Article  MathSciNet  Google Scholar 

  • Carlin BP, Banerjee S (2003) Hierarchical multivariate CAR models for spatio-temporally correlated survival data (with discussion). In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AEM, West M (eds) Bayesian statistics 7. Oxford University Press, Oxford, pp 45–63

    Google Scholar 

  • Congdon P (2008a) A spatial structural equation model for health outcomes. J Stat Plan Inference 138(7):2090–2105

    Article  MathSciNet  Google Scholar 

  • Congdon P (2008b) A spatially adaptive conditional autoregressive prior for area health data. Stat Methodol 5(6):552–563

    Article  MathSciNet  Google Scholar 

  • Conti S, O’Hagan A (2010) Bayesian emulation of complex multi-output and dynamic computer models. J Stat Plan Inference 140:640–651

    Article  MathSciNet  Google Scholar 

  • Cressie N (1993) Statistics for spatial data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York

    MATH  Google Scholar 

  • Daniels MJ, Kass RE (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J Am Stat Assoc 94(448):1254–263

    Article  MathSciNet  Google Scholar 

  • Daniels MJ, Zhou Z, Zou H (2006) Conditionally specified spacetime models for multivariate processes. J Comput Graph Stat 15:157–177

    Article  Google Scholar 

  • Dawid AP (1981) Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68(1):265–274

    Article  MathSciNet  Google Scholar 

  • Feingold DG, Varga RS (1962) Block diagonally dominant matrices and generalisations of the Gerschgorin circle theorem. Pac J Math 12:1241–1250

    Article  Google Scholar 

  • Furrer R, Sain SR (2010) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. J Stat Softw 36(10):1–25

    Article  Google Scholar 

  • Genton MG (2007) Separable approximations of space–time covariance matrices. Environmentrics 18:681–695

    Article  MathSciNet  Google Scholar 

  • Genton MG, Kleiber W (2015) Cross-covariance functions for multivariate geostatistics. Stat Sci 30(2):147–163

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85:111

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4:11–25

    Article  Google Scholar 

  • Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonstationary multivariate process modelling through spatially varying coregionalization (with discussion). Test 13:263–312

    Article  MathSciNet  Google Scholar 

  • Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model goodness-of-fit via realized discrepancies. Stat Sin 6:733807

    MATH  Google Scholar 

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378

    Article  MathSciNet  Google Scholar 

  • Goicoa T, Adin A, Ugarte MD, Hodges JS (2018) In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results. Stoch Environ Res Risk Assess 32(2):749–770

    Article  Google Scholar 

  • Greco FP, Trivisano C (2009) A multivariate CAR model for improving the estimation of relative risks. Stat Med 28:1707–1724

    Article  MathSciNet  Google Scholar 

  • Harville DA (2007) Matrix algebra from a statistician’s perspective. Springer, New York

    MATH  Google Scholar 

  • Held L, Natrio I, Penton SE, Rue H, Becker N (2005) Towards joint disease mapping. Stat Methods Med Res 14:61–82

    Article  MathSciNet  Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334

    Article  MathSciNet  Google Scholar 

  • Hoff PD (2011) Separable covariance arrays via the Tucker product, with applications to multivariate relational data. Bayesian Anal 6(2):179–196

    Article  MathSciNet  Google Scholar 

  • Jin X, Carlin BP, Banerjee S (2005) Generalized hierarchical multivariate CAR models for areal data. Biometrics 61:950–961

    Article  MathSciNet  Google Scholar 

  • Jin X, Carlin BP, Banerjee S (2007) Order-free co-regionalized areal data models with application to multiple-disease mapping. J R Stat Soc Ser B 69(5):817–838

    Article  MathSciNet  Google Scholar 

  • Kashyap RL, Chellappa R (1983) Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans Inf Theory IT–29(1):60–72

    Article  Google Scholar 

  • Kim H, Sun D, Tsutakawa RK (2001) A bivariate Bayes method for improving the estimates of mortality rates with a twofold conditional autoregressive model. J Am Stat Assoc 96(456):1506–1521

    Article  MathSciNet  Google Scholar 

  • Knorr-Held L, Best NG (2000) Bayesian modelling of inseparable space–time variation in disease risk. Stat Med 19(17–18):2555–2567

    Article  Google Scholar 

  • Knorr-Held L, Best NG (2001) A shared component model for joint and selective clustering of two diseases. J R Stat Soc Ser A 164:73–85

    Article  MathSciNet  Google Scholar 

  • Lawson A (2013) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Chapman & Hall, New York

    MATH  Google Scholar 

  • Lee D (2011) A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat Spatio-temporal Epidemiol 2(2):79–89

    Article  Google Scholar 

  • Lee D, Rushworth A, Sahu S (2014) A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution. Biometrics 70:419–429

    Article  MathSciNet  Google Scholar 

  • Leroux BG, Lei X, Breslow N (1999) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran ME, Berry D (eds) Statistical models in epidemiology, the environment and clinical trials. Springer, New York, pp 135–178

    Google Scholar 

  • Lichstein JW, Simon TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72(3):445–463

    Article  Google Scholar 

  • Lindgren F, Rue H, Lindstrom J (2011) An explicit link between Gaussian fields and Gaussian Markov random field: the stochastic partial differential equation approach. J R Stat Soc B 73:423–498

    Article  MathSciNet  Google Scholar 

  • Liu X, Wall MM, Hodges JS (2005) Generalized spatial structural equation models. Biostatistics 6(4):539–557

    Article  Google Scholar 

  • MacNab YC, Kemetic A, Gustafson P, Sheps S (2006) An innovative application of Bayesian disease mapping methods to patient safety research: a Canadian adverse medical event study. Stat Med 25:3960–3980

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2007) Spline smoothing in Bayesian disease mapping. Environmetrics 18:727–744

    Article  MathSciNet  Google Scholar 

  • MacNab YC, Gustafson P (2007) Regression B-spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance. Stat Med 26(24):4455–4474

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2009) Bayesian multivariate disease mapping and ecological regression with errors in covariates: Bayesian estimation of DALYs and ‘preventable’ DALYs. Stat Med 28(9):1369–1385

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2010) On Bayesian shared component disease mapping and ecological regression with errors in covariates. Stat Med 29:1239–1249

    MathSciNet  Google Scholar 

  • MacNab YC (2011) On Gaussian Markov random fields and Bayesian disease mapping. Stat Methods Med Res 20:49–68

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2014) On identification in Bayesian disease mapping and ecological–spatial regression. Stat Methods Med Res 23(2):134–55

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2016a) Linear models of coregionalization for multivariate lattice data: a general framework for coregionalized multivariate CAR models. Stat Med 35:3827–3850

    Article  MathSciNet  Google Scholar 

  • MacNab YC (2016b) Linear models of coregionalization for multivariate lattice data: order-dependent and order-free MCARs. Stat Methods Med Res 25(4):1118–1144

    Article  MathSciNet  Google Scholar 

  • Mardia KV (1988) Multi-dimensional multivariate Gaussian Markov random fields with application to image processing. J Multivar Anal 24:265–284

    Article  Google Scholar 

  • Mardia KV, Goodall CR (1993) Spatial–temporal analysis of multivariate environmental monitoring data. Multivar Environ Stat 6(76):347–385

    MathSciNet  MATH  Google Scholar 

  • Martinez-Beneito MA (2013) A general modelling framework for multivariate disease mapping. Biometrika 100(3):539–553

    Article  MathSciNet  Google Scholar 

  • Martinez-Beneito MA, Botella-Rocamora P, Banerjee S (2017) Towards a multi-dimensional approach to Bayesian disease mapping. Bayesian Anal 12(1):239–259

    Article  MathSciNet  Google Scholar 

  • Oliveira VD (2012) Bayesian analysis of conditional autoregressive models. Ann Inst Stat Math 64:107133

    Article  MathSciNet  Google Scholar 

  • Pan JX, MacKenzie G (2003) On the modelling mean–covariance structures in longitudinal studies. Biometrika 90:239–244

    Article  MathSciNet  Google Scholar 

  • Pan JX, MacKenzie G (2007) Modelling conditional covariance in the linear mixed model. Stat Model 7(1):49–71

    Article  MathSciNet  Google Scholar 

  • Pourahmadi M (1999) Joint mean–covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3):677–690

    Article  MathSciNet  Google Scholar 

  • Pourahmadi M (2000) Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika 87(2):425–435

    Article  MathSciNet  Google Scholar 

  • Pourahmadi M (2007) Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters. Biometrika 94(4):1006–1013

    Article  MathSciNet  Google Scholar 

  • Pourahmadi M (2011) Covariance estimation: the GLM and regularization perspectives. Stat Sci 26(3):369–387

    Article  MathSciNet  Google Scholar 

  • Pourahmadi M (2013) High-dimensional covariance estimation. Wiley, New York

    Book  Google Scholar 

  • Pourmohamad T, Lee HKH (2016) Multivariate stochastic process models for correlated responses of mixed type. Bayesian Anal 11(3):797–820

    Article  MathSciNet  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich B, Hodges JS (2008) Modeling longitudinal spatial periodontal data: a spatially adaptive model with tools for specifying priors and checking fit. Biometrics 64:790–799

    Article  MathSciNet  Google Scholar 

  • Reich BJ, Hodges JS, Zadnik V (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62(4):11971206

    Article  MathSciNet  Google Scholar 

  • Royle AJ, Berliner ML (1999) A hierarchical approach to multivariate spatial modeling and prediction. J Agric Biol Environ Stat 4(1):29–56

    Article  MathSciNet  Google Scholar 

  • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman & Hall, New York

    Book  Google Scholar 

  • Sain SR, Cressie N (2007) A spatial analysis of multivariate lattice data. J Econom 140:226–259

    Article  Google Scholar 

  • Sain SR, Furrer R, Cressie N (2011) A spatial analysis of multivariate output from regional climate models. Ann Appl Stat 5(1):150–175

    Article  MathSciNet  Google Scholar 

  • Schmidt AM, Gelfand AE (2003) A Bayesian coregionalization approach for multivariate pollutant data. J Geophys Res 108 STS 10:1–9

    Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64:583–640

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2007) WinBUGS User Manual, Version 1.4.3

  • Sun D, Tsutakawa RK, Speckman PL (1999) Posterior distribution of hierarchical models using CAR(1) distributions. Biometrika 86:341–350

    Article  MathSciNet  Google Scholar 

  • Sun W, Le ND, Zidek JV, Burnett R (1998) Assessment of a Bayesian multivariate interpolation approach for health impact studies. Environmetrics 9:565–586

    Article  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T (2017) One-dimensional, two-dimensional, and three dimensional B-splines to specify space–time interactions in Bayesian disease mapping: model fitting and model identifiability. Spat Stat 22(2):451–468

    Article  MathSciNet  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Wakefield J, Salway R (2001) A statistical framework for ecological and aggregate studies. J R Stat Soc Ser A 164(1):119–137

    Article  MathSciNet  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular leaning theory. J Mach Learn Res 11:3571–3594

    MathSciNet  MATH  Google Scholar 

  • Zhang H (2007) Maximum-likelihood estimation for multivariate spatial linear coregionalization models. Environmetrics 18:125–139

    Article  MathSciNet  Google Scholar 

  • Zhang L, Baladandayuthapani V, Zhu H, Baggerly KA, Majewski T, Czerniak BA, Morris JS (2016) Functional CAR models for large spatially correlated functional datasets. J Am Stat Assoc 111(514):772–786

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful for the comments of two referees, an associate editor, and the editor. Their input led me to a deeper study into the field and a major rewrite of an early version of the manuscript. This research is supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying C. MacNab.

Additional information

This invited paper is discussed in comments available at https://doi.org/10.1007/s11749-018-0606-2; https://doi.org/10.1007/s11749-018-0607-1; https://doi.org/10.1007/s11749-018-0609-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 99 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacNab, Y.C. Some recent work on multivariate Gaussian Markov random fields. TEST 27, 497–541 (2018). https://doi.org/10.1007/s11749-018-0605-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0605-3

Keywords

Mathematics Subject Classification

Navigation