Skip to main content
Log in

Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Four-parameter sinh–arcsinh classes provide flexible distributions with which to model skew, as well as light- or heavy-tailed, departures from a symmetric base distribution. A quantile-based method of estimating their parameters is proposed and the resulting estimates advocated as starting values from which to initiate maximum likelihood estimation. Parametric bootstrap edf-based goodness-of-fit tests for sinh–arcsinh distributions are proposed, and their operating characteristics for small- to medium-sized samples explored in Monte Carlo experiments. The developed methodology is illustrated in the analysis of data on the body mass index of athletes and the depth of snow on an Antarctic ice floe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2014) The skew-normal and related families. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Babu GJ, Rao CR (2004) Goodness-of-fit tests when parameters are estimated. Sankhyā 66:63–74

    MathSciNet  MATH  Google Scholar 

  • Bagkeris E, Malyuta R, Volokha A, Cortina-Borja M, Bailey H, Townsend CL, Thorne C (2015) Pregnancy outcomes in HIV-positive women in Ukraine, 2000–12 (European Collaborative Study in EuroCoord): an observational cohort study. Lancet HIV 2:385–392

    Article  Google Scholar 

  • Balanda KP, MacGillivray HL (1988) Kurtosis: a critical review. Am Stat 42:111–119

    MATH  Google Scholar 

  • Beran R (1986) Simulated power functions. Ann Stat 14:151–173

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RD, Weisberg S (1994) An introduction to regression graphics. Wiley, New York

    Book  MATH  Google Scholar 

  • D’Agostino RB, Stephens MA (eds) (1986) Goodness-of-fit techniques. Dekker, New York

    MATH  Google Scholar 

  • Fischer M, Herrmann K (2013) The HS-SAS and GSH-SAS distribution as model for unconditional and conditional return distributions. Austrian J Stat 42:33–45

    Article  Google Scholar 

  • Fischer MJ (2014) Generalized hyperbolic secant distributions: with applications to finance. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Georgikopoulos NI, Voudouri V (2014) Demand dynamics and peer effects in consumption: historic evidence from a non-parametric model. Arch Econ Hist 26:27–59

    Google Scholar 

  • Harkness WL, Harkness ML (1968) Generalized hyperbolic secant distributions. J Am Stat Assoc 63:329–337

    MathSciNet  MATH  Google Scholar 

  • Hope AC (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc B 30:582–598

    MATH  Google Scholar 

  • Jöckel K-H (1986) Finite sample properties and asymptotic efficiency of Monte Carlo tests. Ann Stat 14:336–347

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC (2015) On families of distributions with shape parameters. Int Stat Rev 83:175–192

    Article  MathSciNet  Google Scholar 

  • Jones MC, Pewsey A (2009) Sinh–arcsinh distributions. Biometrika 96:761–780

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC, Rosco JF, Pewsey A (2011) Skewness-invariant measures of kurtosis. Am Stat 65:89–95

    Article  MathSciNet  Google Scholar 

  • Ke X, Cortina-Borja M, Silva BC, Lowe R, Rakyan V, Dalding D (2013) Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms. Epigenetics 8:1236–1244

    Article  Google Scholar 

  • Knowles RL, Day T, Wade A, Bull C, Wren C, Dezateux C (2014) Patient-reported quality of life outcomes for children with serious congenital heart defects. Arch Dis Child 99:413–419

    Article  Google Scholar 

  • Marriott FH (1979) Barnard’s Monte Carlo tests: how many simulations? J R Stat Soc C 28:75–77

    Google Scholar 

  • Matsumoto K, Voudouris V, Stasinopoulos D, Rigby R, Di Maio C (2012) Exploring crude oil production and export capacity of the OPEC Middle East countries. Energ Policy 48:820–828

    Article  Google Scholar 

  • McKeague IW (2015) Central limit theorems under special relativity. Stat Probab Lett 99:149–155

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  MATH  Google Scholar 

  • Perks W (1932) On some experiments in the graduation of mortality statistics. J Inst Act 63:12–57

    Article  Google Scholar 

  • Pewsey A (2000) Problems of inference for Azzalini’s skew-normal distribution. J Appl Stat 27:859–870

    Article  MATH  Google Scholar 

  • Pewsey A, Abe T (2015) The sinh–arcsinhed logistic family of distributions: properties and inference. Ann Inst Stat Math 67:573–594

    Article  MathSciNet  MATH  Google Scholar 

  • Pewsey A, Neuhäuser M, Ruxton GD (2013) Circular statistics in R. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Pingel R (2014) Some approximations of the logistic distribution with application to the covariance matrix of logistic regression. Stat Probab Lett 85:63–68

    Article  MathSciNet  MATH  Google Scholar 

  • Romano JP (1988) A bootstrap revival of some nonparametric distance tests. J Am Stat Assoc 83:698–708

    Article  MathSciNet  MATH  Google Scholar 

  • Rosco JF, Jones MC, Pewsey A (2011) Skew \(t\) distributions via the sinh–arcsinh transformation. Test 20:630–652

    Article  MathSciNet  MATH  Google Scholar 

  • Rubio FJ, Ogundimu EO, Hutton JL (2016) On modelling asymmetric data using two-piece sinh–arcsinh distributions. Braz J Probab Stat 30:485–501

    Article  MathSciNet  MATH  Google Scholar 

  • Santos-Fernández E, Govindaraju K, Jones G (2014) A new variables acceptance sampling plan for food safety. Food Control 44:249–257

    Article  Google Scholar 

  • Spinelli JJ, Stephens MA (1983) Tests for exponentiality when origin and scale parameters are unknown. Technometrics 29:471–476

    Article  MathSciNet  Google Scholar 

  • Stephens MA (1974) EDF statistics for goodness-of-fit and some comparisons. J Am Stat Assoc 69:730–737

    Article  Google Scholar 

  • Stephens MA (1979) Tests of fit for the logistic distribution based on the empirical distribution function. Biometrika 66:591–595

    Article  MATH  Google Scholar 

  • Stute W, González-Manteiga W, Presedo-Quindimil M (1993) Bootstrap based goodness-of-fit-tests. Metrika 40:243–256

    Article  MathSciNet  MATH  Google Scholar 

  • Szűcs G (2008) Parametric bootstrap tests for continuous and discrete distributions. Metrika 67:63–81

    Article  MathSciNet  MATH  Google Scholar 

  • Talacko J (1956) Perks’ distributions and their role in the theory of Wiener’s stochastic variables. Trab Estad 7:159–174

    Article  MathSciNet  MATH  Google Scholar 

  • Tarnopolski M (2016) Analysis of gamma-ray burst duration distribution using mixtures of skewed distributions. Mon Not R Astron Soc 458:2024–2031

    Article  Google Scholar 

  • Thas O (2010) Comparing distributions. Springer, New York

    Book  MATH  Google Scholar 

  • Vaughan DC (2002) The generalized secant hyperbolic distribution and its properties. Commun Stat Theory Methods 31:219–238

    Article  MathSciNet  MATH  Google Scholar 

  • Voudouris V, Stasinopoulos D, Rigby R, Di Maio C (2011) The ACEGES laboratory for energy policy: exploring the production of crude oil. Energ Policy 39:5480–5489

    Article  Google Scholar 

Download references

Acknowledgements

I am most grateful to Dr Chris Banks and Professor Paul Garthwaite for access to the snow depth data, and to two referees and an Associate Editor for their careful reading of the original manuscript and helpful suggestions as to how it might be improved. Financial support for the research which led to the production of this paper was received from the Junta de Extremadura and the European Union in the form of grant GR15013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Pewsey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pewsey, A. Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions. TEST 27, 147–172 (2018). https://doi.org/10.1007/s11749-017-0538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-017-0538-2

Keywords

Mathematics Subject Classification

Navigation