Skip to main content
Log in

On the definition of phase and amplitude variability in functional data analysis

  • Research Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We introduce a modeling and mathematical framework in which the problem of registering a functional data set can be consistently set. In detail, we show that the introduction, in a functional data analysis, of a metric/semi-metric and of a group of warping functions, with respect to which the metric/semi-metric is invariant, enables a sound and not ambiguous definition of phase and amplitude variability. Indeed, in this framework, we prove that the analysis of a registered functional data set can be re-interpreted as the analysis of a set of suitable equivalence classes associated to original functions and induced by the group of the warping functions. Moreover, an amplitude-to-total variability index is proposed. This index turns out to be useful in practical situations for measuring to what extent phase variability affects the data and for comparing the effectiveness of different registration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman NS, Villarreal JC (2004) Self-modelling regression for longitudinal data with time-invariant covariates. Can J Stat 32(3):251–268

    Article  MathSciNet  MATH  Google Scholar 

  • Brumback LC, Lindstrom MJ (2004) Self modeling with flexible, random time transformations. Biometrics 60(2):461–470

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data via projection-based depth notions. Comput Stat 22(3):481–496

    Article  MathSciNet  MATH  Google Scholar 

  • Davidian M, Lin X, Wang JL (2004) Introduction (Emerging issues in longitudinal and functional data analysis). Stat Sin 14(3):613–614. Special issue

    MathSciNet  Google Scholar 

  • Delaigle A, Hall P (2010) Defining probability density for a distribution of random functions. Ann Stat 38(2):1171–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F (2010) High-dimensional data: a fascinating statistical challenge. J Multivar Anal 101(2):305–306. Special issue

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Romain Y (2011) The Oxford Handbook of Functional Data Analysis. Oxford Handbook. Oxford University Press, Oxford

    Google Scholar 

  • Ferraty F, Vieu P (2002) The functional nonparametric model and application to spectrometric data. Comput Stat 17(4):545–564

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer Series in Statistics, Theory and Practice. Springer, New York

    MATH  Google Scholar 

  • Ferraty F, Laksaci A, Tadj A, Vieu P (2010) Rate of uniform consistency for nonparametric estimates with functional variables. J Stat Plan Inference 140(2):335–352

    Article  MathSciNet  MATH  Google Scholar 

  • González Manteiga W, Vieu P (2007) Statistics for functional data. Comput Stat Data Anal 51(10):4788–4792. Special issue

    Article  MATH  Google Scholar 

  • James GM (2007) Curve alignment by moments. Ann Appl Stat 1(2):480–501

    Article  MathSciNet  MATH  Google Scholar 

  • Kaziska D, Srivastava A (2007) Gait-based human recognition by classification of cyclostationary processes on nonlinear shape manifolds. J Am Stat Assoc 102:1114–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Ke C, Wang Y (2001) Semiparametric nonlinear mixed-effects models and their applications. J Am Stat Assoc 96(456):1272–1298. With comments and a rejoinder by the authors

    Article  MathSciNet  MATH  Google Scholar 

  • Kneip A, Ramsay JO (2008) Combining registration and fitting for functional models. J Am Stat Assoc 103(483):1155–1165

    Article  MathSciNet  MATH  Google Scholar 

  • Kneip A, Li X, MacGibbon KB, Ramsay JO (2000) Curve registration by local regression. Can J Stat 28(1):19–29

    Article  MathSciNet  MATH  Google Scholar 

  • Lawton WH, EA Sylvestre, Maggio MS (1972) Self modeling nonlinear regression. Technometrics 14(3):513–532

    Article  MATH  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687

    Article  MathSciNet  Google Scholar 

  • Liu X, Müller HG (2004) Functional convex averaging and synchronization for time-warped random curves. J Am Stat Assoc 99(467):687–699

    Article  MATH  Google Scholar 

  • Ramsay JO, Li X (1998) Curve registration. J R Stat Soc, Ser B, Stat Methodol 60(2):351–363

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional Data Analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Sangalli LM, Secchi P, Vantini S, Veneziani A (2009) A case study in exploratory functional data analysis: Geometrical features of the internal carotid artery. J Am Stat Assoc 104(485):37–48

    Article  MathSciNet  Google Scholar 

  • Sangalli LM, Secchi P, Vantini S, Vitelli V (2010) K-mean alignment for curve clustering. Comput Stat Data Anal 54(5):1219–1233

    Article  MathSciNet  MATH  Google Scholar 

  • Tang R, Muller HG (2009) Time-synchronized clustering of gene expression trajectories. Biostatistics 10(1):32–45

    Article  Google Scholar 

  • Valderrama MJ (2007) An overview to modelling functional data. Comput Stat 22(3):331–334. Special issue

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Vantini.

Additional information

Communicated by Domingo Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vantini, S. On the definition of phase and amplitude variability in functional data analysis. TEST 21, 676–696 (2012). https://doi.org/10.1007/s11749-011-0268-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-011-0268-9

Keywords

Mathematics Subject Classification (2000)

Navigation