Skip to main content
Log in

Infrared Spectroscopy and Multivariate Calibration for Quantification of Soybean Oil as Adulterant in Biodiesel Fuels

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

This work quantifies the adulteration of ethyl and methyl soybean biodiesels/diesel (B5) blended with soybean oil using mid-infrared spectroscopy associated with multivariate calibration. The models constructed by the method of partial least squares (PLS) presented low values of root-mean-square error of prediction 0.22 % (w/w) and 0.26 % (w/w), respectively, for models containing ethyl and methyl soybean biodiesel. Along with the parameters of error, accuracy was evaluated by the use of an elliptical joint confidence region (EJCR). The EJCR for the both PLS models showed there was no significant difference between the prepared concentration values and PLS predicted concentration values, and that there was no evidence of bias within the 95 % confidence level. The PLS models showed excellent correlation in the prediction set (R = 0.999) and did not present systematic errors according to the ASTM E1655 standard. Therefore, the models presented excellent performance in quantifying soybean oil as an adulterant in B5 blends, in concentrations within the range 1.00–30.00 % (w/w). The proposed methodology showed itself to be efficient for quality control of B5 contaminated with vegetable oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahamuni NN, Adewuyi YG (2009) Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel-biodiesel blends, and blend adulteration with soy oil. Energy Fuels 23:3773–3782

    Article  CAS  Google Scholar 

  2. Guarieiro LLN, Pinto AC, Aguiar PF, Ribeiro NM (2008) Metodologia analítica para quantificar o teor de biodiesel na mistura biodiesel: diesel utilizando espectroscopia na região do infravermelho. Quím Nova 31:421–426

    Article  CAS  Google Scholar 

  3. Gama PE, Gil RASS, Lachter ER (2010) Produção de biodiesel através de transesterificação in situ de sementes de girassol via catálise homogênea e heterogênea. Quím Nova 33:1859–1862

    Article  CAS  Google Scholar 

  4. Soares IP, Russo RMO, Prates RGD, Augusti R, Fortes ICP, Pasa VMD (2011) Avaliação da eficiência das técnicas ESI-MS e ATR-FTIR na determinação de adulteração em BX com querosene e óleo residual. Quím Nova 34:1439–1442

    Article  CAS  Google Scholar 

  5. Alves JCL, Poppi RJ (2013) Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM). Talanta 104:155–161

    Article  CAS  Google Scholar 

  6. Lira LFB, Vasconcelos FVC, Pereira CF, Paim APS, Stragevitch L, Pimentel MF (2010) Prediction of properties of biodiesel/diesel blends by infrared spectroscopy and calibration multivariate. Fuel 89:405–409

    Article  Google Scholar 

  7. Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, Hazrat MA (2013) Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: a review. Renew Sustain Energy Rev 28:441–455

    Article  CAS  Google Scholar 

  8. Monteiro M, Ambrozin A, Liao L, Ferreira A (2008) Critical review on analytical methods for biodiesel characterization. Talanta 77:593–605

    Article  CAS  Google Scholar 

  9. Rohman A, Man YBC (2011) The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chem 129:583–588

    Article  CAS  Google Scholar 

  10. Knothe G (1999) Rapid monitoring of transesterification and assessing biodiesel fuel quality by near-infrared spectroscopy using a fiber-optic probe. J Am Oil Chem Soc 76:795–800

    Article  CAS  Google Scholar 

  11. Pereira RCC, Skrobot VL, Castro EVR, Fortes ICP, Pasa VMD (2006) Determination of gasoline adulteration by principal components analysis-linear discriminant analysis applied to FTIR spectra. Energy Fuels 20:1097–1102

    Article  CAS  Google Scholar 

  12. Man YBC, Setiowaty G (1999) Application of Fourier transform infrared spectroscopy to determine free fatty acid contents in palm olein. Food Chem 66:109–114

    Article  CAS  Google Scholar 

  13. Pimentel MF, Ribeiro GMGS, Cruz RS, Stragevitch L, Filho JGAP, Teixeira LSG (2006) Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration. Microchem J 82:201–206

    Article  Google Scholar 

  14. Soares IP, Rezende TF, Fortes ICP (2009) Study of the behavior changes in physical-chemistry properties of diesel/biodiesel (B2) mixtures with residual oil and its quantification by partial least-squares attenuated total reflection-Fourier transformed infrared spectroscopy (PLS/ATR-FTIR). Energy Fuels 23:4143–4148

    Article  CAS  Google Scholar 

  15. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  16. ASTM Standard E1655 (2005) Standard practices for infrared multivariate quantitative analysis, ASTM International, West Conshohocken, PA, 2005. doi:10.1520/E1655-05R12. www.astm.org

  17. Fernandes DDS, Gomes AA, Costa GB, Silva GWB, Véras G (2011) Determination of biodiesel content in biodiesel/diesel blends using NIR and visible spectroscopy with variable selection. Talanta 87:30–34

    Article  CAS  Google Scholar 

  18. Gontijo LC, Guimarães E, Mitsutake H, Santana FB, Santos DQ, Borges Neto W (2014) Quantification of soybean biodiesels in diesel blends according to ASTM E1655 using mid-infrared spectroscopy and multivariate calibration. Fuel 117:1111–1114

    Article  CAS  Google Scholar 

  19. Ferreira MMC, Antunes AM, Melgo MS, Volpe PLO (1999) Chemometrics I: multivariate calibration, a tutorial. Quím Nova 22:724–731

    Article  CAS  Google Scholar 

  20. Shen F, Ying Y, Li B, Zheng Y, Hu J (2011) Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy. Food Res Int 44:1521–1527

    Article  CAS  Google Scholar 

  21. Ribeiro FAL, Ferreira MMC (2008) Planilha de validação: uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Quím Nova 31:164–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge FAPEMIG—Research Support Foundation of Minas Gerais, Project number FAPEMIG-17.014/11 and Transpetro S/A for providing the fuel samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hery Mitsutake.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, E., Mitsutake, H., Gontijo, L.C. et al. Infrared Spectroscopy and Multivariate Calibration for Quantification of Soybean Oil as Adulterant in Biodiesel Fuels. J Am Oil Chem Soc 92, 777–782 (2015). https://doi.org/10.1007/s11746-015-2656-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2656-x

Keywords

Navigation