Skip to main content
Log in

Effects of Different Oil Sources and Residues on Biomass and Metabolite Production by Yarrowia lipolytica YB 423-12

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Yarrowia lipolytica is known to have the ability to assimilate hydrophobic substrates like triglycerides, fats, and oils, and to produce single-cell oils, lipases, and organic acids. The aim of the present study was to investigate the effects of different oil sources (borage, canola, sesame, Echium, and trout oils) and oil industry residues (olive pomace oil, hazelnut oil press cake, and sunflower seed oil cake) on the growth, lipid accumulation, and lipase and citric acid production by Y. lipolytica YB 423-12. The maximum biomass and lipid accumulation were observed with linseed oil. Among the tested oil sources and oil industry residues, hazelnut oil press cake was the best medium for lipase production. The Y. lipolytica YB 423-12 strain produced 12.32 ± 1.54 U/mL (lipase activity) of lipase on hazelnut oil press cake medium supplemented with glucose. The best substrate for citric acid production was found to be borage oil, with an output of 5.34 ± 0.94 g/L. The biotechnological production of valuable metabolites such as single-cell oil, lipase, and citric acid could be achieved by using these wastes and low-cost substrates with this strain. Furthermore, the cost of the bio-process could also be significantly reduced by the utilization of various low-cost raw materials, residues, wastes, and renewable resources as substrates for this yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  Google Scholar 

  2. Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein, and lipase production by Yarrowia lipolytica. Electron J Biotechn 10(3):425–435

    CAS  Google Scholar 

  3. Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol 2009:1–7 Article ID 562943

    Google Scholar 

  4. Kamzolova SV, Morgunov IG, Aurich A, Perevoznikova OA, Shishkanova NV, Stottmeister U, Finogenova TV (2005) Lipase secretion and citric acid production in Yarrowia lipolytica Yeast grown on animal and vegetable fat. Food Technol Biotech 43(2):113–122

    CAS  Google Scholar 

  5. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biot 58(3):308–312

    Article  CAS  Google Scholar 

  6. Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Anton van Lee 80:215–224

    Article  CAS  Google Scholar 

  7. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–130

    Article  CAS  Google Scholar 

  8. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Tech 113:1031–1051

    Article  CAS  Google Scholar 

  9. Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Tech 112:639–654

    Article  CAS  Google Scholar 

  10. Kyle DJ (2005) The future development of single cell oils. In: Ratledge C, Cohen Z (eds) Single cell oils, chap 15. AOCS Press, Champaign

  11. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  Google Scholar 

  12. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  13. Sinclair A, Attar-Bashi N, Jayasooriya A, Gibson R, Makrides M (2005) Nutritional Aspects of Single Cell Oils: Uses and Applications of Arachidonic Acid and Docosahexaenoic Acid Oils. In: Ratledge C, Cohen Z (eds) Single cell oils, chap 12. AOCS Press, Champaign

  14. Bati N, Hammond EG, Glatz BA (1984) Biomodification of fats and oils: trials with Candida lipolytica. JAOCS 61:1743–1746

    CAS  Google Scholar 

  15. Chatzifragkou A, Petrou I, Gardeli C, Komaitis M, Papanikolaou S (2011) Effect of Origanum vulgare L. Essential oil on growth and lipid profile of Yarrowia lipolytica cultivated on glycerol-based media. JAOCS 88:1955–1964

    CAS  Google Scholar 

  16. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Modelling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108:1049–1055

    Article  CAS  Google Scholar 

  17. Economou CN, Vasiliadou IA, Aggelis G, Pavlou S, Vayenas DV (2011) Modeling of oleaginous fungal biofilm developed on semi-solid media. Bioresour Technol 102:9697–9704

    Article  CAS  Google Scholar 

  18. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresource Technol 102:9737–9742

    Article  CAS  Google Scholar 

  19. Barth G, Gaillardin C (1997) Physiology and Genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  Google Scholar 

  20. Anastassiadis S, Aivasidis A, Wandrey C (2002) Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biot 60(1–2):81–87

    CAS  Google Scholar 

  21. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids. Trends Biotechnol 26(2):100–108

    Article  CAS  Google Scholar 

  22. André A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2009) Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 9:468–478

    Article  Google Scholar 

  23. Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Tech 111:1221–1232

    Article  CAS  Google Scholar 

  24. Kristiansen B, Sinclair CG (1979) Production of citric acid in continuous culture. Biotechnol Bioeng 21:297–315

    Article  CAS  Google Scholar 

  25. Kamzolova SV, Lunina JN, Morgunov IG (2011) Biochemistry of citric acid production from rapeseed oil by Yarrowia lipolytica yeast. JAOCS 88:1965–1976

    CAS  Google Scholar 

  26. Rane K, Sims K (1993) Production of citric acid by Candida lipolytica Y 1095: effect of glucose concentration on yield and productivity. Enzyme Microb Tech 15:646–651

    Article  CAS  Google Scholar 

  27. Corzo G, Revah S (1999) Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour Technol 70:173–180

    Article  CAS  Google Scholar 

  28. Fickers P, Fudalej F, LeDall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud JM (2005) Identification and characterization of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42:264–274

    Article  CAS  Google Scholar 

  29. Song HT, Jiang ZB, Ma LX (2006) Expression and purification of two lipases from Yarrowia lipolytica AS 2.1216. Protein Expres Purif 47(2):393–397

    Article  CAS  Google Scholar 

  30. Peters II, Nelson FE (1948) Factors influencing the production of lipase by Mycotorula lipolytica. J Bacteriol 55:581–591

    CAS  Google Scholar 

  31. Peters II, Nelson FE (1948) Preliminary characterization of lipase of Mycotorula lipolytica. J Bacteriol 55:593–600

    CAS  Google Scholar 

  32. Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microb 66(8):3283–3289

    Article  CAS  Google Scholar 

  33. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99:2419–2428

    Article  CAS  Google Scholar 

  34. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technol 101:2351–2358

    Article  CAS  Google Scholar 

  35. Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52:134–142

    Article  CAS  Google Scholar 

  36. Rymowicz W, Rywinska A, Zarowska B, Juszczyk P (2006) Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap 60:391–394

    Article  CAS  Google Scholar 

  37. Aggelis G, Athanassopoulos N, Paliogianni A, Komaitis M (1998) Effect of a Teucrium polium L. Extract on the growth and fatty acid composition of Saccharomyces cerevisiae and Yarrowia lipolytica. Anton van Lee 73:195–198

    Article  CAS  Google Scholar 

  38. AOAC (Association of Official Analytical Chemists) (1984) Official Methods of Analysis, 14th edn. AOAC, Washington, DC

    Google Scholar 

  39. Aggelis G, Papadiotis G, Komaitis M (1997) Microbial fatty acid specificity. Folia Microbiol 42(2):117–120

    Article  CAS  Google Scholar 

  40. Montet D, Ratomahenina R, Galzy P, Pina M, Graille J (1985) A study of the influence of the growth media on the fatty acid composition in Candida lipolytica diddens and lodder. Biotechnol Lett 7(10):733–736

    Article  CAS  Google Scholar 

  41. Folch J, Lees M, Stanley GHS (1956) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    Google Scholar 

  42. Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G (1995) A mathematical model for the study of lipid accumulation in oleaginous microorganisms: II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil. Grasas Aceites 46(4–5):245–250

    Article  CAS  Google Scholar 

  43. AOAC (1969) AOAC official method 969.33 fatty acids in oils and fats preparation of methyl esters boron trifluoride method. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  44. Marrier JR, Boulet M (1958) Direct determination of citric acid in milk with an improved pyridine acetic anhydride method. J Dairy Sci 41:1683–1692

    Article  Google Scholar 

  45. Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85:35–37

    Article  CAS  Google Scholar 

  46. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744

    Article  CAS  Google Scholar 

  47. Karasu Yalçın S.(2007) Investigation of various parameters affecting citric acid production by Yarrowia lipolytica and Assessment of citric acid production capacities of some endogenic yeast strains. PhD Thesis, Food Engineering Department, Hacettepe University

  48. Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov I (2007) Characteristic of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolytica yeasts. Microbiology 76:20–24

    Article  CAS  Google Scholar 

  49. Aguirre SN, Majolli MVI, Figueroa LIC, Callieri DA (2004) Effect of Phosphorus concentration on the citric acid production by Yarrowia lipolytica S26, in a medium containing yeast extract and sugarcane molasses. In: Jonas R, Pandey A, Tharun G (eds) Biotechnological Advances and Applications in Bioconversion of Renewable Raw Materials. Gesellschaft für Biotechnologische Forschung GmbH Bibliothek, Germany, pp 113–116

    Google Scholar 

  50. Papanikolaou S, Gortzi O, Margeli E, Chinou I (2008) Effect of citrus essential oil addition upon growth and cellular lipids of Yarrowia lipolytica yeast. Eur J Lipid Sci Tech 110:997–1006

    Article  CAS  Google Scholar 

  51. Perez-Campo FM, Dominguez A (2001) Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol 43:429–433

    Article  CAS  Google Scholar 

  52. Glatz BA, Hammond EG, Hsu KH, Baehman L, Batı N, Bednarski W, Brown D, Floetenmeyer M (1984) Production and modification of fats and oils by yeast fermentation. In: Ratledge C, Dawson P, Rattray J (eds) Biotechnology for the oils and fats industry. American Oil Chemists’ Society, New York, pp 163–175

    Google Scholar 

  53. Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    Article  CAS  Google Scholar 

  54. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 46:398–402

    Article  CAS  Google Scholar 

  55. Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous micro-organisms growing on vegetable oils. A van Leeuw J Microb 72(2):159–165

    Article  CAS  Google Scholar 

  56. Kapoor R, Nair H (2005) Gamma linolenic acid oils. In: Shahidi F (ed) Bailey’s industrial oil and fat products, chap 4 vol 3 6th edn. Wiley, New Jersey, pp 67–76

  57. Ackman RG (2005) Fish oils. In: Shahidi F (ed) Bailey’s industrial oil and fat products, chap 11 vol 3 6th edn.Wiley, New Jersey, pp 279–304

  58. Codex Stan 210-1999. Codex Standard for Named Vegetable Oils. www.codexalimentarius.orgAccessed Jan 2013

  59. El-Beltagi HS, Salama ZA, El-Hariri DM (2007) Evaluation of fatty acids profile and the content of some secondary metabolites in seeds of different flax cultivars (Linum usitatissimum L.). Gen Appl Plant Physiol 33(3–4):187–202

    CAS  Google Scholar 

  60. Aoki H, Miyamoto N, Furuya Y, Mankura M, Endo Y, Fujimoto K (2002) Incorporation and accumulation of docosahexaenoic acid from the medium by Pichia methanolica HA-32. Biosci Biotechnol Bioch 66(12):2632–2638

    Article  CAS  Google Scholar 

  61. Nicaud JM, Madzak C, Van der Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2(3):371–379

    CAS  Google Scholar 

  62. Erdem B (2008) Effects of bioprocess parameters on the enzyme activity and selectivity in the production of lipase from Candida rugosa. Master Thesis, Department of Chemical Engineering, Ankara University Graduate School of Natural and Applied Sciences

  63. Papanikolaou S, Beopoulos A, Kolett A, Thevenieau F, Koutinas A, Nicaud JM, Aggelis G (2013) Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J Biotechnol 168:303–314

    Article  CAS  Google Scholar 

  64. Dominguez A, Costas M, Longo MA, Sanroman A (2003) A novel application of solid state culture: production of lipases by Yarrowia lipolytica. Biotechnol Lett 25:1225–1229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a grant from İTÜ BAP, Project No. 36,952 (Istanbul Technical University Scientific Research Projects Department).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neşe Şahin-Yeşilçubuk.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saygün, A., Şahin-Yeşilçubuk, N. & Aran, N. Effects of Different Oil Sources and Residues on Biomass and Metabolite Production by Yarrowia lipolytica YB 423-12. J Am Oil Chem Soc 91, 1521–1530 (2014). https://doi.org/10.1007/s11746-014-2506-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2506-2

Keywords

Navigation