Skip to main content
Log in

Biodiesel Synthesis in a Solvent-Free System by Recombinant Rhizopus oryzae Lipase. Study of the Catalytic Reaction Progress

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The recombinant 1,3-positional selective Rhizopus oryzae lipase (rROL) was used to synthesize biodiesel and monoacylglycerols simultaneously. The reaction was carried out in a solvent-free system with the enzyme immobilized on octadecyl-Sepabeads. Using response surface methodology, the methyl ester yield was optimized by means of the study of the effect of water, substrate molar ratio (methanol:olive oil) and methanol stepwise addition. It was concluded that in order to prevent enzyme inactivation by methanol, alcohol should be added slowly; otherwise a large amount of water would be present. Taking the best conditions, a 50.3 % yield was achieved in 3 h, which corresponds to 75.4 % of the acyl groups at the 1,3-position undergoing transesterification. It was also concluded that methyl esters result from the esterification of the free fatty acid hydrolyzed by the enzyme and also from a direct transesterification of oil. In addition, the fatty acid selectivity of rROL was found not to favor one fatty acid in olive oil over another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z (2009) Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability. Bioresour Technol 100:5146–5154. doi:10.1016/j.biortech.2009.05.068

    Article  CAS  Google Scholar 

  2. Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005. doi:10.1021/jf071724y

    Article  CAS  Google Scholar 

  3. Atabani AE, Silitonga AS, Badruddin IA et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093. doi:10.1016/j.rser.2012.01.003

    Article  Google Scholar 

  4. Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408. doi:10.1016/j.biotechadv.2008.10.008

    Article  CAS  Google Scholar 

  5. Noureddini H, Gao X, Philkana RS (2005) Immobilized pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777. doi:10.1016/j.biortech.2004.05.029

    Article  CAS  Google Scholar 

  6. Tan T, Lu J, Nie K et al (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634. doi:10.1016/j.biotechadv.2010.05.012

    Article  CAS  Google Scholar 

  7. Hama S, Tamalampudi S, Yoshida A et al (2011) Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production. Bioresour Technol 102:10419–10424. doi:10.1016/j.biortech.2011.08.073

    Article  CAS  Google Scholar 

  8. Caballero V, Bautista FM, Campelo JM et al (2009) Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochem 44:334–342. doi:10.1016/j.procbio.2008.11.015

    Article  CAS  Google Scholar 

  9. Zhong N, Cheong L-Z, Xu X (2014) Strategies to obtain high content of monoacylglycerols. Eur J Lipid Sci Technol 116:97–107. doi:10.1002/ejlt.201300336

    Article  CAS  Google Scholar 

  10. Guillén M, Benaiges MD, Valero F (2011) Comparison of the biochemical properties of a recombinant lipase extract from Rhizopus oryzae expressed in Pichia pastoris with a native extract. Biochem Eng J 54:117–123. doi:10.1016/j.bej.2011.02.008

    Article  Google Scholar 

  11. Stoytcheva M, Montero G, Toscano L, Gochev V, Valdez B (2011) The immobilized lipases in biodiesel production. In: Stoytcheva M (ed) Biodiesel—feedstocks and processing technologies. InTech. doi:10.5772/25246. Available from: http://www.intechopen.com/books/biodiesel-feedstocks-and-processing-technologies/the-immobilized-lipases-in-biodiesel-production

  12. Guillén M, Benaiges MD, Valero F (2012) Biosynthesis of ethyl butyrate by immobilized recombinant Rhizopus oryzae lipase expressed in Pichia pastoris. Biochem Eng J 65:1–9. doi:10.1016/j.bej.2012.03.009

    Article  Google Scholar 

  13. Palomo JM, Muñoz G, Fernández-lorente G et al (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Biotechnol Prog 20:279–286

    Google Scholar 

  14. Arnau C, Ramon R, Casas C, Valero F (2010) Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzyme Microb Technol 46:494–500. doi:10.1016/j.enzmictec.2010.01.005

    Article  CAS  Google Scholar 

  15. Resina D, Serrano A, Valero F, Ferrer P (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol 109:103–113. doi:10.1016/j.jbiotec.2003.10.029

    Article  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  17. Shimada Y, Watanabe Y, Samukawa T et al (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarcticalipase. J Am Oil Chem Soc 76:789–793. doi:10.1007/s11746-999-0067-6

    Article  CAS  Google Scholar 

  18. Kaieda M, Samukawa T, Matsumoto T et al (1999) Biodiesel fuel production from plant oil catalyzed by rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88:627–631

    Article  CAS  Google Scholar 

  19. Liu C-H, Huang C-C, Wang Y-W et al (2012) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46. doi:10.1016/j.apenergy.2012.05.053

    Article  CAS  Google Scholar 

  20. Wang Y, Shen X, Li Z et al (2010) Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J Mol Catal B Enzym 67:45–51. doi:10.1016/j.molcatb.2010.07.004

    Article  CAS  Google Scholar 

  21. Al-Zuhair S (2005) Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol Prog 21:1442–1448. doi:10.1021/bp050195k

    Article  CAS  Google Scholar 

  22. Al-Zuhair S, Ling FW, Jun LS (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960. doi:10.1016/j.procbio.2007.03.002

    Article  CAS  Google Scholar 

  23. Du Xu Wei, Zeng Jing, Dehua Liu Y (2004) Conversion of soybean oil to biodiesel fuel using lipozyme tl im in a solvent-free medium. Biocatal Biotransfor 22:45–48. doi:10.1080/10242420410001661222

    Article  CAS  Google Scholar 

  24. Hama S, Yamaji H, Fukumizu T et al (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278. doi:10.1016/j.bej.2006.12.013

    Article  CAS  Google Scholar 

  25. Li N-W, Zong M-H, Wu H (2009) Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem 44:685–688. doi:10.1016/j.procbio.2009.02.012

    Article  CAS  Google Scholar 

  26. Cheng L-H, Cheng Y-F, Yen S-Y, Chen J (2009) Application of UNIQUAC and SVM to ultrafiltration for modeling ternary mixtures of oil, FAME and methanol. Chem Eng Sci 64:5093–5103. doi:10.1016/j.ces.2009.08.017

    Article  CAS  Google Scholar 

  27. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feed stocks for biodiesel production. Bioresour Technol 101:7201–7210. doi:10.1016/j.biortech.2010.04.079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project CTQ2010-15131 of the Spanish Ministry of Science and Innovation, 2009-SGR-281, 2010-CONE3-00063 and the Reference Network in Biotechnology (XRB) (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Valero.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canet, A., Dolors Benaiges, M. & Valero, F. Biodiesel Synthesis in a Solvent-Free System by Recombinant Rhizopus oryzae Lipase. Study of the Catalytic Reaction Progress. J Am Oil Chem Soc 91, 1499–1506 (2014). https://doi.org/10.1007/s11746-014-2498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2498-y

Keywords

Navigation