Skip to main content
Log in

Phase Equilibrium and Optimization Tools: Application for Enhanced Structured Lipids for Foods

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Solid–liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the α polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal β and β′ solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, γ-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. γ-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ΔH:

Enthalpy (kJ/mol)

ε :

Degree of isomorphism

γ :

Activity coefficient

μ :

Chemical potential (kJ/mol)

a, A:

Binary interaction parameters

C p :

Molar heat capacity (kJ/mol)

G :

Extensive Gibbs free energy (kJ)

G :

Molar Gibbs free energy (kJ/mol)

\( \overline{g} \) :

Partial molar Gibbs free energy (kJ/mol)

H :

Extensive enthalpy (kJ)

n :

Number of moles

P :

Pressure (bar)

q :

Molecule size parameter

R :

Gas constant (kJ/mol K)

S :

Specific entropy (kJ/mol K)

T :

Temperature (K)

V :

Molar volume (cm3/mol)

v 0 :

Sum of the carbon number

v non :

Absolute difference in carbon number

X :

Molar fraction

i :

Component i

o :

Pure state

m:

Melting state

j :

Solid phase j

nc :

Number of components

np :

Number of phases

E :

Excess property

ap :

Apparent

p :

Phase p

References

  1. Jiménez-Colmenero F (2007) Healthier lipid formulation approaches in meat based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci Technol 18(11):567–578

    Article  Google Scholar 

  2. Yang T, Zhang H, Mu H, Sinclair AJ, Xu X (2004) Diacylglycerols from butterfat: production by glycerolysis and short-path distillation and analysis of physical properties. J Am Oil Chem Soc 81(10):979–987

    Article  CAS  Google Scholar 

  3. Osborn H, Akoh C (2002) Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 3(1):93–103

    Google Scholar 

  4. Singh AP, McClements DJ, Marangoni AG (2004) Solid fat content determination by ultrasonic velocimetry. Food Res Int 37:545–555

    Article  CAS  Google Scholar 

  5. Arifin N, Cheong LZ, Koh SP, Long K, Tan CP, Yusoff MSA, Aini IN, Lo SK, Lai OM (2009) Physicochemical properties and sensory attributes of medium-and long-chain triacylglycerols (MLCT)-enriched bakery shortening. Food Bioprocess Technol. doi:10.1007/s11947-009-0204-0

  6. Pantzaris TP, Basiron Y (2002) The lauric (coconut and palm kernel) oils. In: Gunstone FD (ed) Vegetable oils in food technology: composition, properties and uses. Blackwell, Oxford, pp 157–202

    Google Scholar 

  7. Braipson-Danthine S, Deroanne C (2004) Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings. Food Res Int 37:941–948

    Article  Google Scholar 

  8. Lee K, Akoh C (1998) Characterization of enzymatically synthesized structured lipids containing eicosapentaenoic, docosahexaenoic, and caprylic acids. J Am Oil Chem Soc 75(4):495–499

    Article  CAS  Google Scholar 

  9. Timm-Heinrich M, Nielsen NS, Xu X, Jacobsen C (2004) Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn2-position—as bulk lipids and in milk drinks. Innov Food Sci Emerg Technol 5(2):249–261

    Article  CAS  Google Scholar 

  10. Iwasaki Y, Yamane T (2000) Enzymatic synthesis of structured lipids. J Mol Catal B Enzym 10(1–3):129–140

    Article  CAS  Google Scholar 

  11. Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Dietet 17:449–459

    Article  CAS  Google Scholar 

  12. Shahidi F (2004) Functional foods: their role in health promotion and disease prevention. J Food Sci 69(5):146–149

    Article  Google Scholar 

  13. Gani R (2004) Chemical product design: challenges and opportunities. Comp Chem Eng 28:2441–2457

    Article  CAS  Google Scholar 

  14. Sato K (2001) Crystallization behaviour of fats and lipids—a review. Chem Eng Sci 56:2255–2265

    Article  CAS  Google Scholar 

  15. Wesdorp LH, van Meeteren JA, de Jong S, Giessen RVD, Overbosch P, Grootscholten PAM, Struik M, Royers E, Don A, de Loos TH, Peters C, Gandasasmita I (2005) Liquid-multiple solid phase equilibria in fats. In: Marangoni AG (ed) Theory and experiments. Fat Crystal Networks, New York, pp 481–710

    Google Scholar 

  16. Inoue T, Hisatsugu Y, Yamamoto R, Suzuki M (2004) Solid–liquid phase behavior of binary fatty acid mixtures 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chem Phys Lipids 127:143–152

    Article  CAS  Google Scholar 

  17. Zhou Y, Hartel RW (2006) Phase behavior of model lipid systems: solubility of high-melting fats in low-melting fats. J Am Oil Chem Soc 83:505–511

    Article  CAS  Google Scholar 

  18. Zhang L, Ueno S, Miura S, Sato K (2007) Binary phase behavior of 1, 3-dipalmitoyl-2-oleoyl-sn-glycerol and 1, 2-dioleoyl-3-palmitoyl-rac-glycerol. J Am Oil Chem Soc 84:219–227

    Article  CAS  Google Scholar 

  19. Himawan C, Starov V, Stapley A (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 122(1–3):3–33

    Article  CAS  Google Scholar 

  20. Won K (1993) Thermodynamic model of liquid-solid equilibria for natural fats and oils. Fluid Phase Equilibr 82:261–273

    Article  CAS  Google Scholar 

  21. Slaughter DW, Doherty MF (1995) Calculation of solid-liquid equilibrium and crystallization paths for melt crystallization processes. Chem Eng Sci 50(11):1679–1694

    Article  CAS  Google Scholar 

  22. Costa MC, Rolemberg MP, Boros LAD, Krahenbuhl MA, de Oliveira MG, Meirelles AJA (2007) Solid-liquid equilibrium of binary fatty acid mixtures. J Chem Eng Data 52:30–36

    Article  CAS  Google Scholar 

  23. Bragg WL, Williams EJ (1934) The effect of thermal agitation on atomic arrangement in alloys. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 145(855): p 699–730

  24. Slaughter DW, Doherty MF (1995) Calculation of solid–liquid equilibrium and crystallization paths for melt crystallization processes. Chem Eng Sci 50(11):1679–1694

    Article  Google Scholar 

  25. Abes M, Bouzidi L, Narine SS (2007) Crystallization and phase behavior of 1,3-propanediol esters II. 1,3-Propanediol distearate/1,3-propanediol dipalmitate (SS/PP) and 1,3-propanediol distearate/1,3-propanediol dimyristate (SS/MM) binary systems. Chem Phys Lipids 150:89–108

    Article  CAS  Google Scholar 

  26. Boodhoo MV, Kutek T, Filip V, Narine SS (2008) The binary phase behavior of 1,3-dimyristoyl-2-stearoyl-sn-glycerol and 1,2-dimyristoyl-3-stearoyl-sn-glycerol. Chem Phys Lipids 154(1):7–18

    Article  CAS  Google Scholar 

  27. Prausnitz JW, Lichtenthaler RN, de Azevedo GE (1998) Molecular thermodynamics of fluid phase equilibria. 3th edn. Prentice-Hall, New York

  28. McDonald CM, Floudas CA (1997) GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Comp Chem Eng 21:1–23

    Article  CAS  Google Scholar 

  29. Teles dos Santos M, Carrilo Le Roux GA, Joulia X, Gerbaud V (2009) Solid–liquid equilibrium modelling and stability tests for triacylglycerols tixtures. Comp Aided Chem Eng 27:885–890

    Article  Google Scholar 

  30. Michelsen ML (1982) The isothermal flash problem Part I. stability. Fluid Phase Equilibr 9:1–19

    Article  CAS  Google Scholar 

  31. Rosenthal RE (2008) GAMS Release 23.2. A user’s guide. GAMS Development Corporation, Washington, DC

    Google Scholar 

  32. Takiyama H, Suzuki H, Uchida H, Matsuoka M (2002) Determination of solid–liquid phase equilibrium by using measured DSC curves. Fluid Phase Equilibr 194–197:1107–1117

    Article  Google Scholar 

  33. Zéberg-Mikkelsen CK, Stenby EH (1999) Predicting the melting points and the enthalpies of fusion of saturated triglycerides by a group contribution method. Fluid Phase Equilibr 162:7–17

    Article  Google Scholar 

  34. Ceriani R, Gani R, Meirelles AJA (2009) Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilibr 28:49–55

    Article  Google Scholar 

  35. Bruin S (1999) Phase equilibrium for food product and process design. Fluid Phase Equilibr 158–160:657–671

    Article  Google Scholar 

  36. Sambanthamurthi R, Sundram K, Tan Y (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558

    Article  CAS  Google Scholar 

  37. Lin SW (2002) Palm oil. In: Gunstone FD (ed) Vegetable oils in food technology: composition properties and uses. Blackwell, Oxford, pp 59–97

    Google Scholar 

  38. Keller G, Lavigne F, Loisel C, Ollivon M, Bourgaux C (1996) Investigation of the complex thermal behaviour of fats. J Therm Anal 47:1545–1565

    Article  CAS  Google Scholar 

  39. Sato K, Koyano T (2001) Crystallization properties of cocoa butter. In: Garti N, Sato K (eds) Crystallization processes in fats and lipid systems. Marcel Dekker, New York, pp 429–456

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support received from The National Council for Scientific and Technological Development (CNPq-Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and the ALFA-II-400 FIPHARIA program (Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Gerbaud.

Appendix: Margules Model and Binary Interaction Parameter models

Appendix: Margules Model and Binary Interaction Parameter models

The definition of the activity coefficient is given by the following Eq. [27]:

$$ RT\ln \gamma_{i} (T,P,x) = \bar{g}_{i}^{E} = \left( {{\frac{{\partial ng^{E} }}{{\partial n_{i} }}}} \right)_{{T,P,n_{j \ne i} }} $$
(A1)

The two-suffix Margules model for multicomponent mixtures is given by:

$$ g^{E} = \sum\limits_{i = 1}^{nc} {\sum\limits_{j = i + 1}^{nc} {A_{ij} x_{i} x_{j} } } $$
(A2)

where

$$ A_{ij} = 2qa_{ij} $$
(A3)

The term q is a measure of the size of the molecules in the pair and \( a_{ij} \)are interaction parameters between molecules i and j. In the Margules equations is assumed that \( q_{i} = q_{j} = q \) (molecules with similar size). However, it is used frequently for all sorts of mixtures, regardless of the relative sizes of the different molecules [27].

The work of Wesdorp [15] showed that there is a great correlation between the degree of isomorphism (coefficient of geometrical similarity) and the parameter \( A_{ij} \). The degree of isomorphism between two TAG can be described by the following expression:

$$ \varepsilon = 1 - {\frac{{v_{\rm{non}} }}{{v_{o} }}} $$
(A4)

vnon is the sum of the absolute differences in carbon number of each of three chains and for v 0 the sum of the carbon numbers of the smallest chain on each glycerol position. Linear regression of experimentally determined \( A_{ij} \) parameters versus the calculated isomorphism as defined by Eq. A4 led to the following correlations [15]:

$$ \varepsilon > 0.93:\;{\frac{{A_{ij}^{\beta '} }}{RT}} = 0 \; \left( {{\text{highmolecular similarity}},{\text{ complete miscibility}}} \right) $$
(A5)
$$ \varepsilon \le 0.93:\;{\frac{{A_{ij}^{\beta '} }}{RT}} = - 19.5\varepsilon + 18.2 $$
(A6)
$$ \varepsilon > 0.98:\;{\frac{{A_{ij}^{\beta } }}{RT}} = 0\; \left( {{\text{highmolecular similarity}},{\text{ complete miscibility}}} \right) $$
(A7)
$$ \varepsilon \le 0.98:\;{\frac{{A_{ij}^{\beta } }}{RT}} = - 35.8\varepsilon + 35.9 $$
(A8)

The primary value of the Margules equations lies in their ability to serve as simple empirical equations for representing experimentally determined activity coefficients with only a few constants and when, as is often the case, experimental data are scattered and scarce, they serve as an efficient tool for interpolation and extrapolation with respect to composition [27].

About this article

Cite this article

dos Santos, M.T., Le Roux, G.A.C. & Gerbaud, V. Phase Equilibrium and Optimization Tools: Application for Enhanced Structured Lipids for Foods. J Am Oil Chem Soc 88, 223–233 (2011). https://doi.org/10.1007/s11746-010-1665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-010-1665-z

Keywords

Navigation