Skip to main content
Log in

MALDI-TOF Fingerprinting of Seminal Plasma Lipids in the Study of Human Male Infertility

  • Original Article
  • Published:
Lipids

Abstract

This study proposed lipid fingerprinting of human seminal plasma by mass spectrometry as an analytical method to differentiate biological conditions. For this purpose, we chose infertile men as a model to study specific conditions, namely: high and low seminal plasma lipid peroxidation levels (sub-study 1.1), high and low sperm nuclear DNA fragmentation (sub-study 1.2), and intervention status: before and after subinguinal microsurgical varicocelectomy (study 2). Study 1 included 133 patients, of which 113 were utilized for sub-study 1.1 and 89 for sub-study 1.2. Study 2 included 17 adult men submitted to subinguinal varicocelectomy, before and 90 days after varicocelectomy. Lipids were extracted from seminal plasma and submitted to Matrix-Assisted Laser Desorption Ionization Quadrupole-Time-of-Flight Mass Spectrometry in the positive ionization mode. Spectra were processed using Waters® MassLynx, and MetaboAnalyst online software was used for statistical analyses. For sub-studies 1.1 and 1.2, and study 2, univariate analysis revealed 8, 87 and 34 significant ions, respectively. Multivariate analysis was performed through PCA and PLS-DA. PCA generated 56, 32 and 34 components respectively for each study and these were submitted to logistic regression. A ROC curve was plotted and the area under the curve was equal to 97.4, 92.5 and 96.5 %. PLS-DA generated a list of 19, 24 and 23 VIP ions for sub-studies 1.1 and 1.2, and study 2, respectively. Therefore, this study established the lipid profile and comparison of patterns altered in response to specific biological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CNPq:

National Council of Technological and Scientific Development

DNA:

Deoxyribonucleic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

FAPESP:

Sao Paulo Research Foundation

LPO:

Lipid peroxidation

m/z :

Mass-to-charge ratio

MALDI:

Matrix-assisted laser desorption ionization

MALDI-TOF MS:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

MDA:

Malondialdehyde

mRNA:

Messenger ribonucleic acid

MS:

Mass spectrometry

OS:

Oxidative stress

PCA:

Principal component analysis

PLS-DA:

Partial least square-discriminant analysis

ROC:

Receiver operating characteristics

SD:

Standard deviation

SPSS:

Statistical package of the social sciences

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

TBE:

Tris, boric acid and EDTA

TCA:

Trichloroacetic acid

UNIFESP:

Sao Paulo Federal University

VIP:

Variable importance in projection

References

  1. Bragazzi NL (2013) From P0 to P6 medicine, a model of highly participatory, narrative, interactive, and “augmented” medicine: some considerations on Salvatore Iaconesi’s clinical story. Patient Prefer Adherence 24(7):353–359

    Article  Google Scholar 

  2. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fuchs B, Süb R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49(4):450–475

    Article  CAS  PubMed  Google Scholar 

  4. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K (1999) Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: a methodological approach. Anal Biochem 267(1):46–56

    Article  CAS  PubMed  Google Scholar 

  5. Schiller J, Arnhold J, Glander HJ, Arnold K (2000) Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy––effects of freezing and thawing. Chem Phys Lipids 106(2):145–156

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51(5):1218–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Montani DA, Cordeiro FB, Regiani T, Victorino AB, Pilau EJ, Gozzo FC, Ferreira CR, Fraietta R, Lo Turco EG (2012) The follicular microenviroment as a predictor of pregnancy: mALDI-TOF MS lipid profile in cumulus cells. J Assist Reprod Genet 29(11):1289–1297

    Article  PubMed Central  PubMed  Google Scholar 

  8. Want EJ, Nordström A, Morita H, Siuzdak G (2007) From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res 6(2):459–468

    Article  CAS  PubMed  Google Scholar 

  9. Hidaka H, Hanyu N, Sugano M, Kawasaki K, Yamauchi K, Katsumaya T (2007) Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry. Ann Clin Lab Sci 37(3):213–221

    CAS  PubMed  Google Scholar 

  10. Fuchs B, Arnold K, Schiller J (2008) Mass spectrometry of biological molecules. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–39

    Google Scholar 

  11. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

    Article  CAS  PubMed  Google Scholar 

  12. Cataldi T, Cordeiro FB, Costa Ldo V, Pilau EJ, Ferreira CR, Gozzo FC, Eberlin MN, Bertolla RP, Cedenho AP, Turco EG (2013) Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. Hum Fertil 16(4):269–277

    Article  CAS  Google Scholar 

  13. Hu C, Van der Heijden R, Wang M, Van der Greef J, Hankemeier T, Xu G (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2836–2846

    Article  CAS  PubMed  Google Scholar 

  14. Yetukuri L, Katajamaa M, Medina-Gomez G, Seppänen-Laakso T, Vidal-Puig A, Oresic M (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 15:1–12

    Google Scholar 

  15. Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G (2005) Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77(13):4108–4116

    Article  CAS  PubMed  Google Scholar 

  16. Clish CB, Davidov E, Oresic M, Plasterer TN, Lavine G, Londo T, Meys M, Snell P, Stochaj W, Adourian A, Zhang X, Morel N, Neumann E, Verheij E, Vogels JTWE, Havekes LM, Afeyan N, Regnier F, Van Der Greef J, Naylor S (2004) Integrative biological analysis of the APOE*3-Leiden transgenic mouse. OMICS 8(1):3–13

    Article  CAS  PubMed  Google Scholar 

  17. Jia L, Wang C, Kong H, Cai Z, Xu G (2006) Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. Metabolomics 2(2):95–104

    Article  CAS  Google Scholar 

  18. Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, Slee E, Lu X, Xu G, van der Greef J, Hankemeier T (2008) RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res 7(11):4982–4991

    Article  CAS  PubMed  Google Scholar 

  19. Wiest MM, Watkins SM (2007) Biomarker discovery using high-dimensional lipid analysis. Curr Opin Lipidol 18(2):181–186

    Article  CAS  PubMed  Google Scholar 

  20. Whiley L, Godzien J, Ruperez FJ, Legido-Quigley C, Barbas C (2012) In-vial dual extraction for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic fingerprinting. Anal Chem 84(14):5992–5999

    Article  CAS  PubMed  Google Scholar 

  21. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    Article  CAS  PubMed  Google Scholar 

  22. Watson AD (2006) Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111

    Article  CAS  PubMed  Google Scholar 

  23. Steinberg D (2005) Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. J Lipid Res 46(2):179–190

    Article  CAS  PubMed  Google Scholar 

  24. De Oliveira L, Câmara NO, Bonetti T, Lo Turco EG, Bertolla RP, Moron AF, Sass N, Da Silva ID (2012) Lipid fingerprinting in women with early-onset preeclampsia: a first look. Clim Biochem 45(10–11):852–855

    Article  Google Scholar 

  25. Fuchs B, Jakop U, Göritz F, Hermes R, Hildebrandt T, Schiller J, Müller K (2009) MALDI-TOF “fingerprint” phospholipid mass spectra allow the differentiation between Ruminantia and Feloidae spermatozoa. Theriogenology 71(4):568–575

    Article  CAS  PubMed  Google Scholar 

  26. Arienti G, Saccardi Carla, Carlini Enrico, Verdacchi Rosaria, Carlo A (1999) Distribution of lipid and protein in human semen fractions. Clin Chim Acta 289(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  27. World Health Organization (2010) Laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 5th edn. Cambridge University. Press, New York

    Google Scholar 

  28. Marmar JL, DeBenedictis TJ, Praiss D (1985) The management of varicoceles by microdissection of the spermatic cord at the external inguinal ring. Fertil Steril 43(4):583–588

    CAS  PubMed  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  30. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  31. Bertolla RP, Cedenho AP, Hassun Filho PA, Lima SB, Ortiz V, Srougi M (2006) Sperm nuclear DNA fragmentation in adolescents with varicocele. Fertil Steril 85(3):625–628

    Article  CAS  PubMed  Google Scholar 

  32. Fariello RM, Del Giudice PT, Spaine DM, Fraietta R, Bertolla RP, Cedenho AP (2009) Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet 26(2–3):15–17

    Google Scholar 

  33. Mozaffarieh M, Schoetzau A, Sauter M, Grieshaber M, Orgül S, Golubnitschaja O, Flammer J (2008) Comet assay analysis of single-stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis 14:1584–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Dubin L, Amelar RD (1977) Varicocelectomy: 986 cases in a twelve-year study. Urology 10(5):446–449

    Article  CAS  PubMed  Google Scholar 

  35. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  36. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucl Acids Res 37:W652–W660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xia J, Mandal R, Sinelnikov I, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0––a comprehensive server for metabolomic data analysis. Nucl Acids Res 40:W127–W133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Oresic M, Hanninen VA, Vidal-Puig A (2008) Lipidomics: a new window to biomedical frontiers. Trends Biotechnol 26(12):647–652

    Article  CAS  PubMed  Google Scholar 

  39. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K (1999) Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: a methodological approach. Anal Biochem 267(1):46–56

    Article  CAS  PubMed  Google Scholar 

  40. Sleno L, Volmer DA (2006) Assessing the properties of internal standards of quantitative matrix-laser desorption/ionization mass spectrometry of small molecules. Rapid Commun Mass Spectrom 20(10):1517–1524

    Article  CAS  PubMed  Google Scholar 

  41. Schiller J, Suss R, Arnhold J, Fuchs B, Lessig J, Muller M, Petkovic M, Spalteholz H, Zschornig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43(5):449–488

    Article  CAS  PubMed  Google Scholar 

  42. Anderson TW (1987) A review of multivariate Analysis. Comment Statist Sci. 2(4):413–417

    Article  Google Scholar 

  43. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51

    Article  CAS  PubMed  Google Scholar 

  44. Vance JC, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44(4):207–234

    Article  CAS  PubMed  Google Scholar 

  45. Kotwicka M, Jendraszak M, Jedrzejczak P (2011) Phosphatidylserine membrane translocation in human spermatozoa: topography in membrane domains and relation to cell vitality. J Membrane Biol 240(3):165–170

    Article  CAS  Google Scholar 

  46. Candé C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115(Pt 24):4727–4734

    Article  PubMed  Google Scholar 

  47. Paasch U, Sharma RK, Grupta AK, Grunewald S, Mascha EJ, Thomas AJ Jr, Glander HJ, Agarwal A (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71(6):1828–1837

    Article  CAS  PubMed  Google Scholar 

  48. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    Article  CAS  PubMed  Google Scholar 

  49. Perry DK, Stevens VL, Widlanski T, Lambeth JD (1993) A novel ecto-phosphatidic acid phosphohydrolase activity mediates activation of neutrophil superoxide generation by exogenous phosphatidic acid. J Biol Chem 268(34):25302–25310

    CAS  PubMed  Google Scholar 

  50. Aitken RJ, Harkiss D, Buckingham DW (1993) Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev 35(3):302–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge National Council of Technological and Scientific Development (CNPq) for providing funding for the research (Process 472941/2012-7) and a scholarship to Ms. Camargo, and Ms. Bruna de Lima. We also thank the Sao Paulo Research Foundation (FAPESP) for providing a scholarship to Ms. Intasqui. The fund providers had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Pimenta Bertolla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11745_2014_3922_MOESM1_ESM.pdf

Supplementary material 1 (PDF 112 kb) Supplementary Fig. 1 Example MALDI spectrum for study 2 (Pre and Post-varicocelectomy)

11745_2014_3922_MOESM2_ESM.pdf

Supplementary material 2 (PDF 525 kb) Supplementary Table 1 Significant ions of sub-studies 1.1 and 1.2 and study 2, revealed by Univariate analysis, and their respective lipid category, class, error mass, fold-change

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, M., Intasqui, P., Bruna de Lima, C. et al. MALDI-TOF Fingerprinting of Seminal Plasma Lipids in the Study of Human Male Infertility. Lipids 49, 943–956 (2014). https://doi.org/10.1007/s11745-014-3922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3922-7

Keywords

Navigation