Skip to main content
Log in

Identification of Plasmalogen Cardiolipins from Pectinatus by Liquid Chromatography–High Resolution Electrospray Ionization Tandem Mass Spectrometry

  • Original Article
  • Published:
Lipids

Abstract

High resolution electrospray ionization tandem mass spectrometry (HR-ESI–MS/MS) was used to analyze cardiolipins (Ptd2Gro) including their plasmalogen forms from three species of the anaerobic beer-spoilage bacterial genus Pectinatus. Cardiolipins including their plasmalogens were analyzed by HR-ESI–MS/MS on Orbitrap and almost 100 cardiolipins (i.e. tetra-acyl—Ptd2Gro, plasmenyl-tri-acyl—PlsPtd2Gro, and di-plasmenyl-di-acyl—Pls2Ptd2Gro) of three classes were identified. The structures of the molecular species that consist of various regioisomers and structurally similar compounds were revealed in detail. The high resolution mass spectrometry allowed the unambiguous structural assignment of Ptd2Gro, PlsPtd2Gro, and Pls2Ptd2Gro in the three species of Pectinatus, which contain predominantly odd numbered fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

FA:

Fatty acid(s)

FAME:

Fatty acid methyl ester(s)

GC–MS:

Gas chromatography–mass spectrometry

HILIC:

Hydrophilic interaction liquid chromatography

HR-ESI–MS:

High resolution electro spray mass spectrometry

LC/ESI–MS/MS:

Liquid chromatography–electrospray ionization tandem mass spectrometry

PIsOH:

Phosphatidylinositol

Pls2Ptd2Gro:

Diplasmenyl-diacyl-cardiolipin

PlsPtd2Gro:

Plasmenyl-triacyl-cardiolipin

Ptd2Gro:

Cardiolipin

PtdEtn:

Phosphatidylethanolamine

PtdGro:

Phosphatidylglycerol

PtdOH:

Phosphatidic acid

RIBM:

Research Institute of Brewing and Malting

TLC:

Thin layer chromatography

References

  1. Vaughan A, O’Sullivan T, van Sinderen D (2005) Enhancing the microbiological stability of malt and beer—a review. J Inst Brew 111(4):355–371

    Article  CAS  Google Scholar 

  2. Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, Carlier JP, Jumas-Bilak E (2010) Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol 60(6):1271–1279

    Article  PubMed  CAS  Google Scholar 

  3. Matoulkova D, Kosar K, Slaby M, Sigler K (2012) Occurrence and species distribution of strictly anaerobic bacterium Pectinatus in brewery bottling halls. J Amer Soc Brew Chem 70(4):262–267

    CAS  Google Scholar 

  4. Chelack BJ, Ingledew WM (1987) Anaerobic gram-negative bacteria in brewing—a review. J Amer Soc Brew Chem 45(4):123–127

    CAS  Google Scholar 

  5. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89(2–3):105–124

    Article  PubMed  CAS  Google Scholar 

  6. Zhang WW, Fang MX, Tan HQ, Zhang XQ, Wu M, Zhu XF (2012) Pectinatus brassicae sp. nov., a gram-negative, anaerobic bacterium isolated from salty wastewater. Int J Syst Evol Microbiol 62(9):2145–2149

    Article  PubMed  CAS  Google Scholar 

  7. Jespersen L, Jakobsen M (1996) Specific spoilage organisms in breweries and laboratory media for their detection. Int J Food Microbiol 33(1):139–155

    Article  PubMed  CAS  Google Scholar 

  8. Matoulkova D, Kosar K, Sigler K (2012) Rapid, simple and specific cultivation-based method for detection of Pectinatus sp. in brewery samples. J Amer Soc Brew Chem 70(1):29–34

    CAS  Google Scholar 

  9. Satokari R, Juvonen R, Mallison K, von Wright A, Haikara A (1998) Detection of beer spoilage bacteria Megasphaera and Pectinatus by polymerase chain reaction and colorimetric microplate hybridization. Int J Food Microbiol 45(2):119–127

    Article  PubMed  CAS  Google Scholar 

  10. Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125(2):162–169

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki K (2011) 125th anniversary review: microbiological instability of beer caused by spoilage bacteria. J Inst Brew 117(2):131–155

    Article  CAS  Google Scholar 

  12. Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G (2008) Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J Appl Microbiol 105(4):951–962

    Article  PubMed  CAS  Google Scholar 

  13. Goldfine H (2010) The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 49(4):493–498

    Article  PubMed  CAS  Google Scholar 

  14. Rezanka T, Kresinova Z, Kolouchova I, Sigler K (2012) Lipidomic analysis of bacterial plasmalogens. Folia Microbiol 57(5):463–472

    Article  CAS  Google Scholar 

  15. Geiger O, Gonzalez-Silva N, Lopez-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49(1):46–60

    Article  PubMed  CAS  Google Scholar 

  16. Johnston NC, Aygun-Sunar S, Guan Z, Ribeiro AA, Daldal F, Raetz CRH, Goldfine H (2010) A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. J Lipid Res 51(7):1953–1961

    Article  PubMed  CAS  Google Scholar 

  17. Guan Z, Johnston NC, Raetz CRH, Johnson EA, Goldfine H (2012) Lipid diversity among botulinum neurotoxin producing clostridia. Microbiology (United Kingdom) 158(10):2577–2584

    CAS  Google Scholar 

  18. Guan Z, Johnston NC, Aygun-Sunar S, Daldal F, Raetz CRH, Goldfine H (2011) Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochim Biophys Acta—Mol Cell Biol Lipids 1811(3):186–193

    Article  CAS  Google Scholar 

  19. Christie WW, Han X (2010) Lipid analysis, 4th edn. The Oily Press, Bridgwater

    Book  Google Scholar 

  20. Vaidyanathan S, Kell DB, Goodacre R (2002) Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. J Am Soc Mass Spectrom 13(2):118–128

    Article  PubMed  CAS  Google Scholar 

  21. Zhang JI, Talaty N, Costa AB, Xia Y, Tao WA, Bell R, Callahan JH, Cooks RG (2011) Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry. Int J Mass Spectr 301(1–3):37–44

    Article  CAS  Google Scholar 

  22. Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217(32):5179–5183

    Article  PubMed  CAS  Google Scholar 

  23. Kamleh A, Barrett MP, Wildridge D, Burchmore RJS, Scheltema RA, Watson DG (2008) Metabolomic profiling using orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun Mass Spectrom 22(12):912–1918

    Article  Google Scholar 

  24. Scherer M, Schmitz G, Liebisch G (2010) Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC–MS/MS including correction of isotopic overlap. Anal Chem 82(21):8794–8799

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen HP, Schug KA (2008) The advantages of ESI–MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31(9):1465–1480

    Article  PubMed  CAS  Google Scholar 

  26. Uran S, Larsen A, Jacobsen PB, Skotland T (2001) Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. J Chromatogr B 758(2):265–275

    Article  CAS  Google Scholar 

  27. Olsson NU, Harding AJ, Harper C, Salem N (1996) High-performance liquid chromatography method with light-scattering detection for measurements of lipid class composition: analysis of brains from alcoholics. J Chromatogr B 681(2):213–218

    Article  CAS  Google Scholar 

  28. Mawatari S, Okuma Y, Fujino T (2007) Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. Anal Biochem 370(1):54–59

    Article  PubMed  CAS  Google Scholar 

  29. Hsu FF, Turk J, Thukkani AK, Messner MC, Wildsmith KR, Ford DA (2003) Characterization of alkylacyl, alk-1-enylacyl and lyso subclasses of glycerophosphocholine by tandem quadrupole mass spectrometry with electrospray ionization. J Mass Spectrom 38(7):752–763

    Article  PubMed  CAS  Google Scholar 

  30. Hsu FF, Turk J (2005) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of complex lipids: structural characterization and mechanisms of fragmentation. In: Byrdwell WC (ed) Modern methods for lipid analysis by liquid chromatography/mass spectrometry and related techniques. AOCS Press, Champaign, pp 61–178

    Google Scholar 

  31. Rezanka T, Siristova L, Melzoch K, Sigler K (2009) Direct ESI–MS analysis of O-acyl glycosylated cardiolipins from the thermophilic bacterium Alicyclobacillus acidoterrestris. Chem Phys Lipids 161(2):115–121

    Article  PubMed  CAS  Google Scholar 

  32. Rezanka T, Siristova L, Matoulkova D, Sigler K (2011) Hydrophilic interaction liquid chromatography: ESI–MS/MS of plasmalogen phospholipids from Pectinatus bacterium. Lipids 46(8):765–780

    Article  PubMed  CAS  Google Scholar 

  33. Bligh ED, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol 37(8):911–917

    Article  CAS  Google Scholar 

  34. Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Laboratory techniques in biochemistry and molecular biology. Elsevier, Amsterdam, pp 220–223

    Google Scholar 

  35. Rezanka T, Dembitsky V (1999) Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry 51(8):963–968

    Article  PubMed  CAS  Google Scholar 

  36. Johnston NC, Goldfine H, Fischer W (1994) Novel polar lipid composition of Clostridium innocuum as the basis for an assessment of its taxonomic status. Microbiology 140(1):105–111

    Article  PubMed  CAS  Google Scholar 

  37. Rezanka T, Kambourova M, Derekova A, Kolouchova I, Sigler K (2012) LC/ESI–MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern. Lipids 47(7):729–739

    Article  PubMed  CAS  Google Scholar 

  38. Oulevey J, Bahl H, Thiele OW (1986) Novel alk-l-enyl ether lipids isolated from Clostridium acetobutylicum. Arch Microbiol 144(2):166–168

    Article  CAS  Google Scholar 

  39. Hsu FF, Turk J (2006) Characterization of cardiolipin from Escherichia coli by electrospray ionization with multiple stage quadrupole ion-trap mass spectrometric analysis of [M-2H + Na] ions. J Am Soc Mass Spectr 17(3):420–429

    Article  CAS  Google Scholar 

  40. Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertrand JC, Doumenq P (2005) Effects of pure n-alkanes and crude oil on bacterial phospholipid classes and molecular species determined by electrospray ionization mass spectrometry. J Chromatogr B 822(1–2):40–53

    Article  CAS  Google Scholar 

  41. de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) (2009) Bergey’s manual of systematic bacteriology, Volume three: The Firmicutes, Springer USA

  42. Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA (2005) Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectr 16(4):491–504

    Article  CAS  Google Scholar 

  43. Hsu FF, Turk J (2006) Characterization of cardiolipin as the sodiated ions by positive-ion electrospray ionization with multiple stage quadrupole ion-trap mass spectrometry. J Am Soc Mass Spectr 17(8):1146–1157

    Article  CAS  Google Scholar 

  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37(4):463–464

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by GACR P503/11/0215 and P503/12/1424, and by the Institutional Internal Project RVO 61388971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 135 kb)

About this article

Cite this article

Řezanka, T., Matoulková, D., Kyselová, L. et al. Identification of Plasmalogen Cardiolipins from Pectinatus by Liquid Chromatography–High Resolution Electrospray Ionization Tandem Mass Spectrometry. Lipids 48, 1237–1251 (2013). https://doi.org/10.1007/s11745-013-3851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3851-x

Keywords

Navigation