Skip to main content
Log in

Ezetimibe Impairs Uptake of Dietary Cholesterol Oxidation Products and Reduces Alterations in Hepatic Cholesterol Metabolism and Antioxidant Function in Rats

  • Original Article
  • Published:
Lipids

Abstract

Dietary cholesterol oxidation products (COP) induce various adverse effects, including development of atherosclerosis, modulation of lipid metabolism, and unfavorable changes in the antioxidant system. Therefore, we examined the effects of ezetimibe, a cholesterol absorption inhibitor on hepatic cholesterol metabolism and down-regulation of the antioxidant system in rats fed COP. Rats were fed a purified diet containing 0.3 % COP with or without ezetimibe (0.07 mg/100 g body weight) for 27 days. Levels of COP in both the plasma and liver were lowered by ezetimibe through promotion of COP excretion into the feces. Reflecting this effect, an increase in the arteriosclerotic index and a reduction in the mRNA expression of hepatic cholesterol biosynthesis transcripts by dietary COP were observed. Moreover, the ferric reducing ability of the plasma also was significantly higher in rats fed COP plus ezetimibe than in those fed COP alone. Finally, we also observed that ezetimibe enhanced the down-regulation of hepatic fatty acid synthesis in rats fed COP. Thus, ezetimibe, which inhibits the absorption of dietary COP from the small intestine, may exert preventive effects on dietary COP-induced disruption of cholesterol and fatty acid metabolism in the liver and down-regulation of the antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BW:

Body weight

COP:

Cholesterol oxidation product

FAS:

Fatty acid synthase

FRAP:

Ferric reducing ability of plasma

G6PDH:

Glucose-6-phosphate dehydrogenase

GC:

Gas liquid chromatography

GC/MS:

GC–mass spectrometry

HDL:

High-density lipoprotein

HMG:

Hydroxymethylglutaryl

NPC1L1:

Niemann–Pick C1 like 1

RT-PCR:

Reverse transcription polymerase chain reaction

SREBP:

Sterol regulatory element-binding protein

References

  1. Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G (2009) Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 16:685–705

    Article  PubMed  CAS  Google Scholar 

  2. Yuan XM, Li W, Btunk UT, Dalen H, Chang YH, Sevanian A (2000) Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med 28:208–218

    Article  PubMed  CAS  Google Scholar 

  3. Larsson DA, Baird S, Nyhalah D, Yuan X-M, Li W (2006) Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptotic effects. Free Radic Biol Med 41:902–910

    Article  PubMed  CAS  Google Scholar 

  4. Paniangvait P, King AJ, Jones AD, German B (1995) Cholesterol oxides in foods of animal origin. J Food Sci 60:1159–1174

    Article  CAS  Google Scholar 

  5. Lake RJ, Scholes P (1997) Quality and consumption of oxidized lipids from deep-frying fats and oils in New Zealand. J Am Oil Chem Soc 74:1065–1068

    Article  CAS  Google Scholar 

  6. Lake RJ, Scholes P (1997) Consumption of cholesterol oxides from fast foods fried in beef fat in New Zealand. J Am Oil Chem Soc 74:1069–1075

    Article  CAS  Google Scholar 

  7. Ryan E, Chopra J, McCarthy F, Maguire AR, O’Brien NM (2005) Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br J Nutr 94:443–451

    Article  PubMed  CAS  Google Scholar 

  8. Osada K, Minehira K, Inoue S, Nakamura S, Yamada K, Sugano M (2000) Effect of oxidized cholesterol on age-associated changes to immune parameters in spleen lymphocytes and peritoneal exudate cells derived from rats. Biosci Biotech Biochem 64:1047–1051

    Article  CAS  Google Scholar 

  9. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21:97–114

    Article  PubMed  CAS  Google Scholar 

  10. Davis HR, Veltri EP (2007) Zetia: inhibition of Niemann–Pick C1 Like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. J Atheroscler Thromb 14:99–108

    Article  PubMed  CAS  Google Scholar 

  11. Altmann SW, Davis HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SPN, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann–Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Google Scholar 

  12. Davis HR, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SPN, Lam MH, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann–Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. Biol Chem 279:33586–33592

    Article  CAS  Google Scholar 

  13. Sané AT, Sinnett D, Delvin E, Bendayan M, Marcil V, Ménard D, Beaulieu JF, Levy E (2006) Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res 47:2112–2120

    Article  PubMed  Google Scholar 

  14. Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519

    Google Scholar 

  15. Deushi M, Nomura M, Kawakami A, Haraguchi M, Ito M, Okazaki M, Ishii H, Yoshida M (2007) Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome. FEBS Lett 581:5664–5670

    Article  PubMed  CAS  Google Scholar 

  16. Labonté ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE, Davies JP, Ioannou YA, Tso P, Hui DY, Howles PN (2008) Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. Am J Physiol Gastrointest Liver Physiol 295:G776–G783

    Article  PubMed  Google Scholar 

  17. Assy N, Grozovski M, Bersudsky I, Szvalb S, Hussein O (2006) Effect of insulin-sensitizing agents in combination with ezetimibe, and valsartan in rats with non-alcoholic fatty liver disease. World J Gastroenterol 12:4369–4376

    PubMed  CAS  Google Scholar 

  18. Zheng S, Hoos L, Cook J, Tetzloff G, Davis H, Van Heek M, Hwa JJ (2008) Ezetimibe improves high fat and cholesterol diet-induced non-alcoholic fatty liver disease in mice. Eur J Pharmacol 584:118–124

    Article  PubMed  CAS  Google Scholar 

  19. Minehira K, Inoue S, Nonaka M, Osada K, Yamada K, Sugano M (2000) Effects of dietary protein type on oxidized cholesterol-induced alteration in age-related modulation of lipid metabolism and indices of immune function in rats. Biochim Biophys Acta 1483:141–153

    Article  PubMed  CAS  Google Scholar 

  20. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  21. Ide T, Okamatsu H, Sugano M (1978) Regulation by dietary fats of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase in rat liver. J Nutr 108:601–612

    PubMed  CAS  Google Scholar 

  22. Burchard H (1890). Beiträge zur Kenntnis des Cholesterins. Chem Zentralb l61:25–27

  23. Osada K, Kodama T, Yamada K, Sugano M (1993) Oxidation of cholesterol by heating. J Agric Food Chem 41:1198–1202

    Article  CAS  Google Scholar 

  24. Ueda T, Igarashi O (1987) New solvent system for extraction of tocopherols from biological specimens for HPLC determination and the evaluation of 2,2,5,7,8-pentamethyl-6-chromanol as an internal standard. J Micronutr Anal 3:185–198

    CAS  Google Scholar 

  25. Ma S-W, Tomlinson B, Benzie IF (2005) A study of the effect of oral glucose loading on plasma oxidant: antioxidant balance in normal subjects. Eur J Nutr 44:250–254

    Article  PubMed  CAS  Google Scholar 

  26. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  27. Nakatsugawa K, Kaneda T (1981) Absorption of methyl linoleate hydroperoxides in rabbit. J Jpn Oil Chem Soc 30:74–77

    Article  CAS  Google Scholar 

  28. Nakatsugawa K, Kaneda T (1983) Absorption and metabolism of methyl linoleate hydroperoxides in rats. J Jpn Oil Chem Soc 32:361–366

    Article  CAS  Google Scholar 

  29. Osada K, Kodama T, Yamada K, Nakamura S, Sugano M (1998) Dietary oxidized cholesterol modulates cholesterol metabolism and linoleic acid desaturation in rats fed high-cholesterol diets. Lipids 33:757–764

    Article  PubMed  CAS  Google Scholar 

  30. Smith LL, Johnson BH (1989) Biological activities of oxysterols. Free Radic Biol Med 7:285–332

    Article  PubMed  CAS  Google Scholar 

  31. Osada K, Inoue T, Nakamura S, Sugano M (1999) Dietary soybean protein moderates the deleterious disturbance of lipid metabolism caused by exogenous oxidized cholesterol in rats. Biochim Biophys Acta 1427:337–350

    Article  PubMed  CAS  Google Scholar 

  32. Ogino Y, Osada K, Nakamura S, Ohta Y, Kanda T, Sugano M, Ogino Y (2007) Absorption of dietary cholesterol oxidation products and their downstream metabolic effects are reduced by dietary apple polyphenols. Lipids 42:151–161

    Article  PubMed  CAS  Google Scholar 

  33. Osada K, Sasaki E, Sugano M (1994) Inhibition of cholesterol absorption by oxidized cholesterol in rats. Biosci Biotech Biochem 58:782–783

    Article  CAS  Google Scholar 

  34. Schroepfer GJ Jr (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80:361–554

    PubMed  CAS  Google Scholar 

  35. Van Heek M, Farley C, Compton DS, Hoos L, Alton KB, Sybertz EJ, Davis HR (2000) Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br J Pharmacol 129:1748–1754

    Article  PubMed  Google Scholar 

  36. Bays HE, Moore PB, Drehobl MA, Rosenblatt S, Toth PD, Dujovne CA, Knopp RH, Lipka LJ, Lebeaut AP, Yang B, Mellars LE, Cuffie-Jackson C, Veltri EP (2001) Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther 23:1209–1230

    Article  PubMed  CAS  Google Scholar 

  37. Dujovne CA, Ettinger MP, McNeer JF, Lipka LJ, LeBeaut AP, Suresh R, Yang B, Veltri EP (2002) Efficacy and safety of a potent new inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol 90:1092–1097

    Article  PubMed  CAS  Google Scholar 

  38. Knopp R (2003) Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 24:729–741

    Article  PubMed  CAS  Google Scholar 

  39. Sudhop T (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948

    Article  PubMed  CAS  Google Scholar 

  40. Repa JJ, Turley SD, Quan G, Dietschy JM (2005) Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J Lipid Res 46:779–789

    Article  PubMed  CAS  Google Scholar 

  41. Staprans I, Pan XM, Rapp JH, Moser AH, Feingold KR (2006) Ezetimibe inhibits the incorporation of dietary oxidized cholesterol into lipoproteins. J Lipid Res 47:2575–2580

    Google Scholar 

  42. Narushima K, Takada T, Yamanashi Y, Suzuki H (2008) Niemann–Pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol 74:42–49

    Article  PubMed  CAS  Google Scholar 

  43. Fernandez-Hernando C, Moore KJ (2011) MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol 31:2378–2382

    Article  PubMed  CAS  Google Scholar 

  44. Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, Goldstein JL (2004) Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem 279:52772–52780

    Article  PubMed  CAS  Google Scholar 

  45. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci USA 104:6511–6518

    Article  PubMed  CAS  Google Scholar 

  46. Osada K, Kodama T, Noda S, Yamada K, Sugano M (1995) Oxidized cholesterol modulates age-related change in lipid metabolism in rats. Lipids 30:405–413

    Article  PubMed  CAS  Google Scholar 

  47. Jump DB, Botolin D, Wang Y, Xu J, Christian B, Demeure O (2005) Fatty acid regulation of hepatic gene transcription. J Nutr 135:2503–2506

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoichi Osada.

About this article

Cite this article

Terunuma, S., Kumata, N. & Osada, K. Ezetimibe Impairs Uptake of Dietary Cholesterol Oxidation Products and Reduces Alterations in Hepatic Cholesterol Metabolism and Antioxidant Function in Rats. Lipids 48, 587–595 (2013). https://doi.org/10.1007/s11745-013-3790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3790-6

Keywords

Navigation