Skip to main content
Log in

Formation of Triterpenoids throughout Olea europaea Fruit Ontogeny

  • Original Article
  • Published:
Lipids

Abstract

Drupes were handpicked from olive (Olea europaea L.) trees, cv chemlali, at 13 distinct stages of fruit development, referred to as weeks after flowering (WAF), and analyzed for their free and esterified sterols and triterpenoids content. These two classes of compounds are synthesized via the acetate/mevalonate pathway and share common precursors up to oxidosqualene (OS). Cyclization of OS in either cycloartenol or β-amyrin constitutes a branch point between primary (sterol pathway) and secondary (triterpenoid pathway) metabolisms. At the onset of fruit development, i.e., between 12 and 18 WAF, drupes were found to contain high amounts of α- and β-amyrins as well as more-oxygenated compounds such as triterpenic diols (erythrodiol and uvaol) and acids (oleanolic, ursolic and maslinic acids). Concomitantly, sterol precursors were barely detectable. From 21 WAF, when the olive fruit reached its final size and began to turn from green to purple, α- and β-amyrins were no longer present, while 4,4-dimethyl- and 4α-methylsterols started to be formed, indicating a redirection of the carbon flux from the triterpenoid pathway towards the sterol pathway. Between 21 and 30 WAF, sterol end products, mainly represented by sitosterol, progressively accumulated and triterpenic diols were replaced by triterpenic acids, essentially maslinic acid. Interestingly, the developing olive fruit was found to accumulate significant amounts of parkeol as an ester conjugate. Whatever the stage of development, triterpenoids represent the major triterpenic compounds of the olive fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

βAS:

β-Amyrin synthase

CAS:

Cycloartenol synthase

HPTA:

Hydroxy pentacyclic triterpenic acid

OS:

Oxidosqualene

RRT:

Relative retention time

TAG:

Triacylglycerol

WAF:

Week after flowering

References

  1. Mahato SB, Nandy AK, Roy G (1992) Triterpenoids. Phytochemistry 31:2199–2249

    Article  PubMed  CAS  Google Scholar 

  2. Xu R, Fazio GC, Matsuda SPT (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65:261–291

    Article  PubMed  CAS  Google Scholar 

  3. Connolly JD, Hill RA (2005) Triterpenoids. Nat Prod Rep 22:230–248

    Article  PubMed  CAS  Google Scholar 

  4. Akihisa T, Yasukawa K, Kimura Y, Takase S, Yamanouchi S, Tamura T (1997) Triterpene alcohols from camellia and sasanqua oils and their anti-inflammatory effects. Chem Pharm Bull (Tokyo) 45:2016–2023

    CAS  Google Scholar 

  5. Ukiya M, Akihisa T, Tokuda H, Suzuki H, Mukainaka T, Ichiishi E, Yasukawa K, Kasahara Y, Nishino H (2002) Constituents of Compositae plants III. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible Chrysanthemum flowers. Cancer Lett 177:7–12

    Article  PubMed  CAS  Google Scholar 

  6. Popovich DG, Kitts DD (2002) Structure–function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch Biochem Biophys 406:1–8

    Article  PubMed  CAS  Google Scholar 

  7. Akihisa T, Franzblau SG, Ukiya M, Okuda H, Zhang F, Yasukawa K, Suzuki T, Kimura Y (2005) Anti-tubercular activity of triterpenoids from Asteraceae flowers. Biol Pharm Bull 28:158–160

    Article  PubMed  CAS  Google Scholar 

  8. Benveniste P (2002) Sterol metabolism, American Society of Plant Biologists, Rockville. http://www.bioone.org/archive/1543–8120/38/1/pdf/i1543–8120-38-1-1.pdf

  9. Seo S, Yoshimura Y, Uomori A, Takeda K, Seto H, Ebizuka Y, Sankawa U (1988) Biosynthesis of triterpenes, ursolic acid, and oleanolic acid in tissue cultures of Rabdosia japonica Hara fed [5-13C2H2] mevalonolactone and [2-13C2H3] acetate. J Am Chem Soc 110:1740–1745

    Article  CAS  Google Scholar 

  10. Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    Article  CAS  Google Scholar 

  11. Herrera JBR, Bartel B, Wilson WK, Matsuda SPT (1998) Cloning and characterization of the Arabidopsis thaliana Lupeol synthase gene. Phytochemistry 49:1905–1911

    Article  PubMed  CAS  Google Scholar 

  12. Morita M, Shibuya M, Kushiro T, Masuda K, Ebizuka Y (2000) Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur J Biochem 26:3453–3460

    Article  Google Scholar 

  13. Segura MJ, Meyer MM, Matsuda SPT (2000) Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol. Org Lett 2:2257–2259

    Article  PubMed  CAS  Google Scholar 

  14. Husselstein-Muller T, Schaller H, Benveniste P (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45:75–92

    Article  PubMed  CAS  Google Scholar 

  15. Ebizuka Y, Katsube Y, Tsutsumi T, Kushiro T, Shibuya M (2003) Functional genomics approach to the study of triterpene biosynthesis. Pure Appl Chem 75:369–374

    CAS  Google Scholar 

  16. Mahato SB, Sarkar SK, Poddar G (1988) Triterpenoid saponins. Phytochemistry 27:3037–3067

    Article  CAS  Google Scholar 

  17. Power FB, Tutin F (1908) The constituents of olive leaves. J Chem Soc Trans 93:891–904

    Article  CAS  Google Scholar 

  18. Caputo R, Mangoni L, Monaco P, Previtera L (1974) New triterpenes from the leaves of Olea europaea. Phytochemistry 13:2825–2827

    Article  CAS  Google Scholar 

  19. Itoh T, Yoshida K, Yatsu T, Tamura T, Matsumoto T (1981) Triterpene alcohols and sterols of Spanish olive oil. J Am Oil Chem Soc 58:545–550

    Article  CAS  Google Scholar 

  20. Hartmann MA, Benveniste P (1987) Plant membrane sterols: isolation, identification and biosynthesis. Methods Enzymol 148:632–650

    Article  CAS  Google Scholar 

  21. Rahier A, Benveniste P (1989) Mass spectral identification of phytosterols, In: Nes WD, Parish E (eds) Analysis of sterols and other biologically significant steroids, Academic, New York, pp 223–250

    Google Scholar 

  22. Pérez-Camino MC, Cert A (1999) Quantitative determination of hydroxy pentacyclic triterpene acids in vegetable oils. J Agric Food Chem 47:1558–1562

    Article  PubMed  Google Scholar 

  23. Budzikiewicz H, Wilson JM, Djerassi C (1963) Mass spectrometry in structural and stereochemical problems. XXXII Pentacyclic triterpenes. J Am Chem Soc 85:3688–3699

    Article  CAS  Google Scholar 

  24. Shiojima K, Arai Y, Masuda K, Takase Y, Ageta T, Ageta H (1992) Mass spectra of pentacyclic triterpenoids. Chem Pharm Bull (Tokyo) 40:1683–1690

    CAS  Google Scholar 

  25. Roca M, Minguez-Mosquera MI (2003) Carotenoid levels during the period of growth and ripening in fruits of different olive varieties (Hojiblanca, Picual and Arbequina). J Plant Physiol 160:451–459

    Article  PubMed  CAS  Google Scholar 

  26. Mathe C, Culioli G, Archier P, Vieillescazes C (2004) Characterization of archaeological frankincense by gas chromatography-mass spectrometry. J Chromatogr A 1023:277–285

    Article  PubMed  CAS  Google Scholar 

  27. Seo S, Tomita Y, Tori K (1981) Biosynthesis of oleanene- and ursene-type triterpenes from [4-13C] mevalonolactone and [1,2-13C2] acetate in tissue cultures of Isodon japonicus Hara. J Am Chem Soc 103:2075–2080

    Article  CAS  Google Scholar 

  28. Hart EA, Hua L, Darr LB, Wilson WK, Pang J, Matsuda SPT (1999) Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. J Am Chem Soc 121:9887–9888

    Article  CAS  Google Scholar 

  29. Chryssafidis D, Maggos P, Kiosseoglou V, Boskou D (1992) Composition of total and esterified 4α-monomethylsterols and triterpene alcohols in virgin olive oil. J Sci Food Agric 58:581–583

    Article  CAS  Google Scholar 

  30. Reina RJ, White KD, Jahngen EG (1997) Validated method for quantitation and identification of 4,4-desmethylsterols and triterpene diols in plant oils by thin-layer chromatography-high resolution gas chromatography-mass spectrometry. J AOAC Int 80:1272–1280

    PubMed  CAS  Google Scholar 

  31. Casas JS, Bueno EO, Garcia AMM, Cano MM (2004) Sterol and erythrodiol + uvaol content of virgin olive oils from cultivars of extremadura (spain). Food Chem 87:225–230

    Article  CAS  Google Scholar 

  32. Stiti N, M’Sallem M, Triki S, Cherif A (2002) Etude de la fraction insaponifiable de l’huile d’olive de différentes variétés tunisiennes. Riv Ital Sostanze Grasse 79:357–363

    Google Scholar 

  33. Rangel B, Platt KA, Thomson WW (1997) Ultrastructural aspects of the cytoplasmic origin and accumulation of oil in olive fruit (Olea europaea). Physiol Plant 101:109–114

    Article  CAS  Google Scholar 

  34. Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-Kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119:507–510

    Article  PubMed  CAS  Google Scholar 

  35. Ro DK, Arimura G, Lau SY, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:8060–8065

    Article  PubMed  CAS  Google Scholar 

  36. Hota RK, Bapuji M (1994) Triterpenoids from the resin of Shorea robusta. Phytochemistry 35:1073–1074

    Article  CAS  Google Scholar 

  37. Fu L, Zhang S, Li N, Wang J, Zhao M, Sakai J, Hasegawa T, Mitsui T, Kataoka T, Oka S, Kiuchi M, Hirose K, Ando M (2005) Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. J Nat Prod 68:198–206

    Article  PubMed  CAS  Google Scholar 

  38. Assimopoulou AN, Papageorgiou VP (2005) GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part 1 Pistacia lentiscus var. Chia. Biomed Chromatogr 19:285–311

    Article  PubMed  CAS  Google Scholar 

  39. Bianchi G, Pozzi N, Vlahov G (1994) Pentacyclic triterpene acids in olives. Phytochemistry 37:205–207

    Article  CAS  Google Scholar 

  40. Baisted DJ (1971) Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem J 124:375–383

    PubMed  CAS  Google Scholar 

  41. Banas A, Carlsson AS, Huang B, Lenman M, Banas W, Lee M, Noiriel A, Benveniste P, Schaller H, Bouvier-Navé P, Stymne S (2005) Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian acyl-CoA:sterol acyltransferases. J Biol Chem 280:34626–34634

    Article  PubMed  CAS  Google Scholar 

  42. Dyas L, Goad LJ (1994) The occurrence of free and esterified sterols in the oil bodies isolated from maize seed scutella and a celery cell suspension culture. Plant Physiol Biochem 32:799–805

    CAS  Google Scholar 

  43. Ross JHE, Sanchez J, Millan F, Murphy DJ (1993) Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea Americana). Plant Science 93:203–210

    Article  CAS  Google Scholar 

  44. Salas JJ, Sánchez J, Ramli US, Manaf AM, Williams M, Harwood JL (2000) Biochemistry of lipid metabolism in olive and other oil fruits. Prog Lipid Res 39:151–180

    Article  PubMed  CAS  Google Scholar 

  45. Kushiro T, Shibuya M, Ebizuka Y (1998) Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi H, Huang P, Takada S, Obinata M, Inoue K, Shibuya M, Ebizuka Y (2004) Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. Biol Pharm Bull 27:1086–1092

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  PubMed  CAS  Google Scholar 

  48. Sawai S, Shindo T, Sato S, Kaneko T, Tabata S, Ayabe SI, Aoki T (2006) Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Science 170:247–257

    Article  CAS  Google Scholar 

  49. Shibuya M, Zhang H, Endo A, Shishikura K, Kushiro T, Ebizuka Y (1999) Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur J Biochem 266:302–307

    Article  PubMed  CAS  Google Scholar 

  50. Zhang H, Shibuya M, Yokota S, Ebizuka Y (2003) Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol Pharm Bull 26:642–650

    Article  PubMed  CAS  Google Scholar 

  51. Guhling O, Hobl B, Yeats T, Jetter R (2006) Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis. Arch Biochem Biophys 448:60–72

    Article  PubMed  CAS  Google Scholar 

  52. Cordeiro ML, Djerassi C (1990) Biosynthetic studies of marine lipids. 25. Biosynthesis of Δ9(11)- and Δ7-sterols and saponins in sea cucumbers. J Org Chem 55:2806–2813

    Article  CAS  Google Scholar 

  53. Makarieva TN, Stonik VA, Kapustina II, Boguslavsky VM, Dmitrenoik AS, Kalinin VI, Cordeiro ML, Djerassi C (1993) Biosynthetic studies of marine lipids. 42. Biosynthesis of steroid and triterpenoid metabolites in the sea cucumber Eupentacta fraudatrix. Steroids 58:508–517

    Article  PubMed  CAS  Google Scholar 

  54. Itoh T, Tamura T, Matsumoto T (1975) 24-methylenelanost-9(11)-en-3β-ol, new triterpene alcohol from shea butter. Lipids 10:454–460

    Article  PubMed  CAS  Google Scholar 

  55. Khalid SA, Varga E, Szendrei K, Duddeck H (1989) Isolation of lanosta-9(11),24-dien-3β-yl acetate from Leuzea carthamoides. J Nat Prod 52:1136–1138

    CAS  Google Scholar 

  56. Yano K, Akihisa T, Tamura T, Matsumoto T (1992) Four 4α-methylsterols and triterpene alcohols from Neolitsea aciculatea. Phytochemistry 31:2093–2098

    Article  CAS  Google Scholar 

  57. Schaefer PC, De Reinach F, Ourisson G (1970) The conversion of parkeol into its 24,25-epoxide by tissue cultures of Nicotiana tabacum. Eur J Biochem 14:284–288

    Article  PubMed  CAS  Google Scholar 

  58. Akihisa T, Nishimura Y, Nakamura N, Roy K, Ghosh P, Thakur S, Tamura T (1992) Sterols of Cajanus cajan and three other leguminosae seeds. Phytochemistry 31:1765–1768

    Article  CAS  Google Scholar 

  59. Matsuda SPT, Darr LB, Hart EA, Herrera JBR, McCann KE, Meyer MM, Pang J, Schepmann HG (2000) Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Org Lett 2:2261–2263

    Article  PubMed  CAS  Google Scholar 

  60. Segura MJR, Lodeiro S, Meyer MM, Patel AJ, Matsuda SPT (2002) Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Org Lett 4:4459–4462

    Article  PubMed  CAS  Google Scholar 

  61. Meyer MM, Segura MJR, Wilson WK, Matsuda SPT (2000) Oxidosqualene cyclase residues that promote formation of cycloartenol, lanosterol, and parkeol. Angew Chem Int Ed 39:4090–4092

    Article  CAS  Google Scholar 

  62. Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW (2006) Tryptophan 232 within oxidosqualene-lanosterol-cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions. Org Lett 8:1319–1322

    Article  PubMed  CAS  Google Scholar 

  63. Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 100:15352–15357

    Article  PubMed  CAS  Google Scholar 

  64. Xu HX, Zeng FQ, Sim KY (1996) Anti-HIV triterpene acids from Geum japonicum. J Nat Prod 59:643–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. Z. Mighri (Faculté des Sciences, Monastir, Tunisia) for providing us with an authentic sample of maslinic acid and Dr. Pierrette Bouvier-Navé (IBMP, Strasbourg, France) for critical analysis of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Andrée Hartmann.

Additional information

Part of this work was presented at the 97th Annual Meeting of the AOCS in Saint Louis, Missouri, April 30–May 3, 2006.

About this article

Cite this article

Stiti, N., Triki, S. & Hartmann, MA. Formation of Triterpenoids throughout Olea europaea Fruit Ontogeny. Lipids 42, 55–67 (2007). https://doi.org/10.1007/s11745-006-3002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-3002-8

Keywords

Navigation