Skip to main content
Log in

Diet and lipoprotein oxidation: Analysis of oxidized triacylglycerols in pig lipoproteins

  • Articles
  • Published:
Lipids

Abstract

Oxidized lipoproteins have a recognized role in atherogenesis, but molecular-level research on oxidized lipids in lipoproteins and the effect of diet on these molecules have been limited. In the present study, the effects of three sunflower seed oil diets differing in oxidation levels (PV in oils 1, 84, and 223 mequiv O2/kg) on lipoprotein lipid oxidation in growing pigs were investigated. The emphasis was on the investigation of oxidized TAG molecules found in chylomicrons and VLDL. A method based on RP-HPLC and electrospray ionization-MS was used for the analysis of oxidized TAG molecules. The baseline diene conjugation method was used for the estimation of in vivo levels of lipoprotein lipid oxidation. Several oxidized TAG structures were found in the samples. These products consisted of TAG molecules with a hydroxy, an epoxy, or a keto group attached to a FA, and of TAG molecules containing an aldehyde structure derived from a FA. The lipoprotein lipids and TAG were more oxidized in the pigs fed on the most oxidized oil compared with those fed on nonoxidized oil. Oxidation of dietary fat was reflected in the lipoprotein oxidation. New, detailed information on oxidized TAG molecules of chylomicrons and VLDL was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:DB:

acyl carbon number:number of double bonds

BDC:

baseline diene conjugation

DNPH:

2,4-dinitrophenyl hydrazine

ESI:

electrospray ionization

TPP:

triphenyl phosphine

References

  1. Steinbrecher, U.P., Zhang, H., and Lougheed, M. (1990) Role of Oxidatively Modified LDL in Atherosclerosis, Free Radic. Biol. Med. 9, 155–168.

    Article  PubMed  CAS  Google Scholar 

  2. Esterbauer, H., Gebicki, J., Puhl, H., and Jurgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modifications of LDL, Free Radic. Biol. Med. 13, 241–290.

    Article  Google Scholar 

  3. Witztum, J.L. (1994) The Oxidation Hypothesis of Atherosclerosis, Lancet 344, 793–795.

    Article  PubMed  CAS  Google Scholar 

  4. Berliner, J.A., and Heinecke, J.W. (1996) The Role of Oxidized Lipoproteins in Atherogenesis, Free Radic. Biol. Med. 20, 707–727.

    Article  PubMed  CAS  Google Scholar 

  5. Jialal, I., and Devaraj, S. (1996) Low-Density Lipoprotein Oxidation, Antioxidants, and Atherosclerosis: A Clinical Biochemistry Perspective, Clin. Chem. 42, 498–506.

    PubMed  CAS  Google Scholar 

  6. Grieve, D.J., Avella, M.A., Elliott, J., and Botham, K.M. (2000) The Interaction Between Oxidised Chylomicron Remnants and the Aorta of Rats Fed a Normocholesterolaemic or Hypercholesterolaemic diet, J. Vasc. Res. 37, 265–275.

    Article  PubMed  CAS  Google Scholar 

  7. Napolitano, M., Rivabene, R., Avella, M., Amicone, L., Tripodi, M., Botham, K.M., and Bravo, E. (2001) Oxidation Affects the Regulation of Hepatic Lipid Synthesis by Chylomicron Remnants, Free Radic. Biol. Med. 30, 506–515.

    Article  PubMed  CAS  Google Scholar 

  8. Naruszewicz, M., Wozny, E., Mirkiewicz, E., Nowicka, G., and Szostak, W.B. (1987) The Effect of Thermally Oxidized Soya Bean Oil on Metabolism of Chylomicrons. Increased Uptake and Degradation of Oxidized Chylomicrons in Cultured Mouse Macrophages, Atherosclerosis 66, 45–53.

    Article  PubMed  CAS  Google Scholar 

  9. Umeda, Y., Redgrave, T.G., Mortimer, B.C., and Mamo, J.C.L. (1995) Kinetics and Uptake in vivo of Oxidatively Modified Chylomicrons, Am. J. Physiol. 268, G709-G716.

    PubMed  CAS  Google Scholar 

  10. Staprans, I., Rapp, J.H., Pan, X.-M., Kim, K.Y., and Feingold, K.R. (1994) Oxidized Lipids in the Diet Are a Source of Oxidized Lipid in Chylomicrons of Human Serum, Arterioscler. Thromb. 14, 1900–1905.

    PubMed  CAS  Google Scholar 

  11. Staprans, I., Rapp, J.H., Pan, X.-M., Kim, K.Y., and Feingold, K.R. (1996) Oxidized Lipids in the Diet Are Incorporated by the Liver into Very Low Density Lipoprotein in Rats, J. Lipid Res. 37, 420–430.

    PubMed  CAS  Google Scholar 

  12. Mamo, J.C.L., and Wheeler, J.R. (1994) Chylomicrons or Their Remnants Penetrate Rabbit Thoracic Aorta as Efficiently as Smaller Macromolecules Including Low Density Lipoprotein, High Density Lipoprotein and Albumin, Coron. Artery Dis. 5, 695–705.

    PubMed  CAS  Google Scholar 

  13. Kamido, H., Kuksis, A., Marai, L., and Myher, J.J. (1995) Lipid Ester-Bound Aldehydes Among Copper-Catalyzed Peroxidation Products of Human Plasma Lipoproteins, J. Lipid Res. 36, 1876–1886.

    PubMed  CAS  Google Scholar 

  14. Karten, B., Boechzelt, H., Abuja, P.M., Mittelbach, M., and Sattler, W. (1999) Macrophage-Enhanced Formation of Cholesteryl Ester-Core Aldehydes During Oxidation of Low Density Lipoprotein, J. Lipid Res. 40, 1240–1253.

    PubMed  CAS  Google Scholar 

  15. Niu, X., Zammit, V., Upston, J.M., Dean, R.T., and Stocker, R. (1999) Coexistence of Oxidized Lipids and α-Tocopherol in All Lipoprotein Density Fractions Isolated from Advanced Human Atherosclerotic Plaques, Arterioscler. Thromb. Vasc. Biol. 19, 1708–1718.

    PubMed  CAS  Google Scholar 

  16. Ahotupa, M., Marniemi, J., Lehtimäki, T., Talvinen, K., Raitakari, O.T., Vasankari, T., Viikari, J., Luoma, J., and Ylä-Herttuala, S. (1998) Baseline Diene Conjugation in LDL Lipids as a Direct Measure of in vivo LDL Oxidation, Clin. Biochem. 31, 257–261.

    Article  PubMed  CAS  Google Scholar 

  17. Suomela, J.-P., Ahotupa, M., Sjövall, O., Kurvinen, J.-P., and Kallio, H. (2004) New Approach to the Analysis of Oxidized Triacylglycerols in Lipoproteins, Lipids 39, 507–512.

    PubMed  CAS  Google Scholar 

  18. Ahotupa, M., Ruutu, M., and Mäntylä, E. (1996) Simple Methods of Quantifying Oxidation Products and Antioxidant Potential of Low Density Lipoproteins, Clin. Biochem. 29, 139–144.

    Article  PubMed  CAS  Google Scholar 

  19. Ahotupa, M., and Vasankari, T.J. (1999) Baseline Diene Conjugation in LDL Lipids: An Indicator of Circulating Oxidized LDL, Free Radic. Biol. Med. 27, 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  20. Gavella, M., Lipovac, V., Car, A., and Vucic, M. (2002) Baseline Diene Conjugation in LDL Lipids from Newly Diagnosed Type 2 Diabetic Patients, Diabetes Metab. 28, 391–396.

    PubMed  CAS  Google Scholar 

  21. Vasankari, T., Fogelholm, M., Kukkonen-Harjula, K., Nenonen, A., Kujala, U., Oja, P., Vuori, I., Pasanen, P., Neuvonen, K., and Ahotupa, M. (2001) Reduced Oxidized Low-Density Lipoprotein After Weight Reduction in Obese Premenopausal Women, Int. J. Obesity Related Metab. Disord. 25, 205–211.

    Article  CAS  Google Scholar 

  22. Byrdwell, W.C., and Neff, W.E. (1999) Non-volatile Products of Triolein Produced at Frying Temperatures Characterized Using Liquid Chromatography with Online Mass Spectrometric Detection, J. Chromatogr. A 852, 417–432.

    Article  PubMed  CAS  Google Scholar 

  23. Byrdwell, W.C., and Neff, W.E. (2001) Autoxidation Products of Normal and Genetically Modified Canola Oil Varieties Determined Using Liquid Chromatography with Mass Spectrometric Detection, J. Chromatogr. A 905, 85–102.

    Article  PubMed  CAS  Google Scholar 

  24. Frankel, E.N., Neff, W.E., and Miyashita, K. (1990) Autoxidation of Polyunsaturated Triacylglycerols. II. Trilinolenoylglycerol, Lipids 25, 40–47.

    CAS  Google Scholar 

  25. Neff, W.E., and Byrdwell, W.C. (1998) Characterization of Model Triacylglycerol (triolein, trilinolein and trilinolenin) Autoxidation Products via High-Performance Liquid Chromatography Coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. Chromatogr. A 818, 169–186.

    Article  CAS  Google Scholar 

  26. Steenhorst-Slikkerveer, L., Louter, A., Janssen, H.-G., and Bauer-Plank, C. (2000) Analysis of Nonvolatile Lipid Oxidation Products in Vegetable Oils by Normal-Phase High-Performance Liquid Chromatography with Mass Spectrometric Detection, J. Am. Oil Chem. Soc. 77, 837–845.

    CAS  Google Scholar 

  27. Sjövall, O., Kuksis, A., Marai, L., and Myher, J.J. (1997) Elution Factors of Synthetic Oxotriacylglycerols as an Aid in Identification of Peroxidized Natural Triacylglycerols by Reverse-Phase High-Performance Liquid Chromatography with Electrospray Mass Spectrometry, Lipids 32, 1211–1218.

    Article  PubMed  Google Scholar 

  28. Sjövall, O., Kuksis, A., and Kallio, H. (2001) Analysis of Molecular Species of Peroxide Adducts of Triacylglycerols Following Treatment of Corn Oil with tert-Butyl Hydroperoxide, Lipids 36, 1347–1356.

    PubMed  Google Scholar 

  29. Sjövall, O., Kuksis, A., and Kallio, H. (2002) Formation of Triacylglycerol Core Aldehydes During Rapid Oxidation of Corn and Sunflower Oils with tert-Butyl Hydroperoxide/Fe2+, Lipids 37, 81–94.

    Google Scholar 

  30. Ravandi, A., Kuksis, A., Myher, J.J., and Marai, L. (1995) Determination of Lipid Ester Ozonides and Core Aldehydes by High-Performance Liquid Chromatography with On-Line Mass Spectrometry, J. Biochem. Biophys. Methods 30, 271–285.

    Article  PubMed  CAS  Google Scholar 

  31. Esterbauer, H., and Cheeseman, K.H. (1990) Determination of Aldehydic Peroxidation Products: Malonaldehyde and 4-Hydroxynonenal, Methods Enzymol. 186, 407–421.

    Article  PubMed  CAS  Google Scholar 

  32. Deffense, E. (1993) Nouvelle Méthode d'Analyse pour Séparer, via HPLC, les Isomères de Position 1–2 et 1–3 des Triglycérides Mono-Insaturés des Graisses Végétales, Rev. Fr. Corps Gras 40, 33–39.

    CAS  Google Scholar 

  33. Neff, W.E., Frankel, E.N., and Weisleder, D. (1982) Photosensitized Oxidation of Methyl Linolenate. Secondary Products, Lipids 17, 780–790.

    CAS  Google Scholar 

  34. Chiba, T., Takazawa, M., and Fujimoto, K. (1989) A Simple Method for Estimating Carbonyl Content in Peroxide-Containing Oils, J. Am. Oil Chem. Soc. 66, 1588–1592.

    CAS  Google Scholar 

  35. Gritter, R.J., and Wallace, T.J. (1959) The Manganese Dioxide Oxidation of Allylic Alcohols, J. Org. Chem. 24, 1051–1056.

    Article  CAS  Google Scholar 

  36. AOCS, Standard Methods and Recommended Pratices of the AOCS, 5th edn., AOCS Press, Champaign, 1997.

    Google Scholar 

  37. IUPAC (1987) Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7th edn., Blackwell Science, Oxford.

    Google Scholar 

  38. Ågren, J.J., Vidgren, H.M., Valve, R.S., Laakso, M., and Uusitupa, M. (2001) Postprandial Responses of Individual Fatty Acids in Subjects Homozygous for the Threonine- or Alanine-Encoding Allele in Codon 54 of the Intestinal Fatty Acid Binding Protein 2 Gene, Am. J. Clin. Nutr. 73, 31–35.

    PubMed  Google Scholar 

  39. Hamilton, J.G., and Comai, K. (1988) Rapid Separation of Neutral Lipids, Free Fatty Acids and Polar Lipids Using Prepacked Silica Sep-Pak Columns, Lipids 23, 1146–1149.

    PubMed  CAS  Google Scholar 

  40. Skipski, V.P., and Barclay, M. (1969) Thin-Layer Chromatography, Methods Enzymol. 14, 542–548.

    Google Scholar 

  41. Christie, W.W. (1982) A Simple Procedure for Rapid Transmethylation of Glycerolipids and Cholesteryl Esters, J. Lipid Res. 23, 1072–1075.

    PubMed  CAS  Google Scholar 

  42. Kuksis, A. (2000) Biochemistry of Glycerolipids and Formation of Chylomicrons, in Fat Digestion and Absorption (Christophe, A.B., and De Vriese, S., eds.), pp. 119–181, AOCS Press, Champaign, IL.

    Google Scholar 

  43. Olson, R.E. (1998) Discovery of the Lipoproteins, Their Role in Fat Transport and Their Significance as Risk Factors, J. Nutr. 128, 439S-443S.

    PubMed  CAS  Google Scholar 

  44. Spiteller, G. (1998) Linoleic Acid Peroxidation—The Dominant Lipid Peroxidation Process in Low Density Lipoprotein—And Its Relationship to Chronic Diseases, Chem. Phys. Lipids 95, 105–162.

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto, Y. (2000) Fate of Lipid Hydroperoxides in Blood Plasma, Free Rad. Res. 33, 795–800.

    Article  CAS  Google Scholar 

  46. Aw, T.Y., Williams, M.W., and Gray, L. (1992) Absorption and Lymphatic Transport of Peroxidized Lipids by Rat Small Intestine in vivo: Role of Mucosal GSH, Am. J. Physiol. 262, G99-G106.

    PubMed  CAS  Google Scholar 

  47. Kanazawa, K., and Ashida, H. (1998) Dietary Hydroperoxides of Linoleic Acid Decompose to Aldehydes in Stomach Before Being Absorbed into the Body, Biochim. Biophys. Acta 1393, 349–361.

    PubMed  CAS  Google Scholar 

  48. Hamsten, A. (1993) Lipids as Coronary Risk Factor: Analysis of Hyperlipidaemias, Postgrad. Med. J. 69, S8-S11.

    PubMed  Google Scholar 

  49. Nagy, L., Tontonoz, P., Alvarez, J.G.A., Chen, H., and Evans, R.M. (1998) Oxidized LDL Regulates Macrophage Gene Expression Through Ligand Activation of PPARγ, Cell 93, 229–240.

    Article  PubMed  CAS  Google Scholar 

  50. Tontonez, P., Nagy, L., Alvarez, J.G.A., Thomazy, V.A., and Evans, R.M. (1998) PPARγ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL, Cell 93, 241–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka-Pekka Suomela.

About this article

Cite this article

Suomela, JP., Ahotupa, M., Sjövall, O. et al. Diet and lipoprotein oxidation: Analysis of oxidized triacylglycerols in pig lipoproteins. Lipids 39, 639–647 (2004). https://doi.org/10.1007/s11745-004-1277-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1277-4

Keywords

Navigation