Skip to main content
Log in

Polyunsaturated fatty acids in plasma lipids of obese children with and without metabolic cardiovascular syndrome

  • Article
  • Published:
Lipids

Abstract

Previously we reported significantly higher values of γ-linolenic acid (GLA, 18∶3n−6), dihomo-γ-linolenic acid (DHGLA, 20∶3n−6), and arachidonic acid (20∶4n−6) in plasma lipid classes in obese children than in nonobese controls. In the present study, fatty acid composition of plasma phospholipids (PL) and sterol esters (STE) was determined by high-resolution capillary gas-liquid chromatography in obese children with an without metabolic cardiovascular syndrome [MCS: defined as simultaneous presence of (i) dyslipidemia, (ii) hyperinsulinemia, (iii) hypertension, and (iv) impaired glucose tolerance] and in nonobese controls. Fatty acid composition of PL and STE lipids did not differ between obese children without MCS and controls. Obese children with MCS exhibited significantly lower linoleic acid (LA, 18∶2n−6) values in PL (17.43 [2.36], %wt/wt, median [range from the first to the third quartile]) than obese children without MCS (19.14 [3.49]) and controls (20.28 [3.80]). In contrast, PL GLA values were significantly higher in obese children with (0.13 [0.08]) than in those without MCS (0.08 [0.04]), whereas STE GLA values were higher in obese children with MCS (1.04 [0.72]) than in controls (0.62 [0.48]). DHGLA values in PL were significantly higher in obese children with MCS (4.06 [0.74]) than in controls (2.69 [1.60]). The GLA/LA ratio was significantly higher, whereas the AA/DHGLA ratio was significantly lower in obese children with MCS than in obese children without MCS and in controls. In this study, LA metabolism was affected only in obese children with but not in those without MCS. In obese children with MCS, δ6-desaturase activity appeared to be stimulated, whereas δ5-desaturase activity appeared to be inhibited. Disturbances in LA metabolism may represent an additional health hazard within the multifaceted clinical picture of MCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DHGLA:

dihomo-γ-linolenic acid

EFA:

essential fatty acid

GLA:

γ-linolenic acid

LA:

lmoleic acid

LCPUFA:

long-chain polyunsaturated fatty acid

MCS:

metabolic cardiovascular syndrome

PL:

phospholipid

PUFA:

polyunsaturated fatty acid

STE:

sterol ester

References

  1. Troiano, R.P., Flegal, K.M., Knczmarski, R.J., Campbell, S.M., and Johnson, C.L. (1995) Overweight Prevalence and Trend for Children and Adolescents. The National Health and Nutrition Examination Surveys, 1963 to 1991, Arch. Pediatr. Adolesc. Med. 149, 1085–1091.

    PubMed  CAS  Google Scholar 

  2. Dóber, I. (1996) The Prevalence of Obesity and Super Obesity Among School Children of Pécs in the 1990s. Anthrop. Közl. 38, 149–155.

    Google Scholar 

  3. Must, A., Jacques, P.F., Dallal, G.E., Bajema, C.J., and Dietz, W.H. (1992) Long-term Morbidity and Mortality of Overweight Adolescents, N. Engl. J. Med. 327, 1350–1355.

    Article  PubMed  CAS  Google Scholar 

  4. Decsi, T., Molnár, D., and Koletzko, B. (1996) Long-chain Polyunsaturated Fatty Acids in Plasma Lipids of Obese Children, Lipids 31, 305–311.

    PubMed  CAS  Google Scholar 

  5. Phinney, S.D., Davis, P.G., Johnson, S.B., and Holman, R.T. (1991) Obesity and Weight Loss Alter Serum Polyunsaturated Lipids in Humans, Am. J. Clin. Nutr. 53, 831–838.

    PubMed  CAS  Google Scholar 

  6. Rössner, S., Walldius, G., and Björvell, H. (1989) Fatty Acid Composition in Serum Lipids and Adipose Tissue in Severe Obesity Before and After Six Weeks of Weight Loss, Int. J. Obes. 13, 603–612.

    PubMed  Google Scholar 

  7. Baillie, G.M., Sherer, J.T., and Weart, C.W. (1998) Insulin and Coronary Artery Disease: Is Syndrome X the Unifying Hypothcsis? Ann. Pharmacother. 32, 233–247.

    Article  PubMed  CAS  Google Scholar 

  8. Liese, A.D., Mayer-Davies, E.J., and Haffner, S.M. (1998) Development of the Multiple Metabolic Syndrome: An Epidemiological Perspective, Epidemiol. Rev. 20, 157–172.

    PubMed  CAS  Google Scholar 

  9. Arslanian, S., and Suprasongsin, C. (1996) insulin Sensitivity, Lipids and Body Composition in Childhood: Is Syndrome X Present? J. Clin. Endocrinol. Metab. 81, 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, W., Srinivasan, S.R., Elkasabany, A., and Berenson, G.S. (1999) Cardiovascular Risk Factors Clustering Features of Insulin Resistance Syndrome (Syndrome X) in a Biracial (Black-White) Population of Children. Adolescents, and Young Adults: The Bogalusa Heart Study, Am. J. Epidemiol. 150, 667–674.

    PubMed  CAS  Google Scholar 

  11. Csábi, G., Török, K., Jeges, S., and Molnár, D. (2000) Presence of Metabolic Cardiovascular Syndrome in Obese Children, Eur. J. Pediatr. 159, 91–94.

    Article  PubMed  Google Scholar 

  12. Parizková, J., and Roth, Z. (1972) Assessment of Depot Fat in Children from Skinfold Measurements by Holtain Caliper. Hum. Biol. 44, 614–616.

    Google Scholar 

  13. Moore, D.J., Durie, P.R., Forstner, G.G., and Pencharz, P.B. (1985) The Assessment of Nutritional Status in Children, Nutr. Res. 5, 797–799.

    Article  Google Scholar 

  14. Tanner, J.M. (1962) Growth at Adolescence, 2nd edn., Blackwell Scientific Publications, Oxford, p. 325.

    Google Scholar 

  15. Task Force on Blood Pressure Control in Children, National Heart, Lung, and Blood Institute, Bethesda, Maryland (1987) Report of the Second Task Force on Blood Pressure Control in Children—1987, Pediatrics 79, 1–25.

    Google Scholar 

  16. Soergel, M., Kirschstein, M., and Busch, C. (1997) Oscillometric Twenty-four-hour Ambulatory Blood Pressure Values in Healthy Children and Adolescents: A Multicenter Trial Including 1141 Subjects, J. Pediatr. 130, 178–184.

    Article  PubMed  CAS  Google Scholar 

  17. Braham, D., and Tinder, P. (1972) An Improved Reagent for the Determination of Blood Glucose by the Oxidase System, Analyst 97, 142–146.

    Article  Google Scholar 

  18. Guthrie, R.A., Guthrie, D.W., and Murthy, D.Y.N. (1973) Standardization of Oral Glucose Tolerance Test and Criteria for the Diagnosis of Chemical Diabetes in Children, Metabolism 22, 275–282.

    Article  PubMed  CAS  Google Scholar 

  19. Alberti, K.G.M.M. (1995) Impaired Glucose Tolerance—Fact or Fiction, Diab. Med. 13, S6-S8.

    Google Scholar 

  20. Steele, B.W., Rochler, D.F., Azar, N.M., Blaszkowszki, T.B., Ruba, K., and Dempsey, M.E. (1976) Enzymatic Determination of Cholesterol in High Density Lipoprotein Fractions Prepared by a Precipitation Technique, Clin. Chem. 22, 98–102.

    PubMed  CAS  Google Scholar 

  21. Romics, L., Szollár, L., and Zajkás, G. (1993) Management of Arteriosclerosis-related Lipid Metabolism Disorders. Recommendations of the Hungarian Lipid Consensus Conference [in Hungarian with English summary], Orv. Hetil. 134, 227–238.

    PubMed  CAS  Google Scholar 

  22. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  23. Stoffel, W., Chu, F., and Ahrens, E.H. (1959) Analysis of Long-Chain Fatty Acids by Gas-Liquid Chromatography, Anal. Chem. 31, 307–308.

    Article  CAS  Google Scholar 

  24. Decsi, T., and Koletzko, B. (1994) Fatty Acid Composition of Plasma Lipid Classes in Healthy Subjects from Birth to Young Adulthood, Eur. J. Pediatr. 153, 520–525.

    Article  PubMed  CAS  Google Scholar 

  25. Cunnane, S.C., Manku, M.S., and Horrobin, D.F. (1985) Essential Fatty Acids in the Liver and Adipose Tissue of Genetically Obese Mice: Effect of Supplemental Linoleic and Gammalinolenic Acids, Br. J. Nutr. 53, 441–448.

    Article  PubMed  CAS  Google Scholar 

  26. Blond, J.-P., Henchiri, C., and Bézard, J. (1989) δ6 and δ5 Desaturase Activities in Liver from Obese Zucker Rats at Different Ages, Lipids 24, 389–395.

    PubMed  CAS  Google Scholar 

  27. Guesnet, P., Bourre, J.-M., Guerre-Millo, M., Pascal, G., and Durand, G. (1990) Tissue Phospholipid Fatty Acid Composition in Genetically Lean (Fa/-) or Obese (fa/fa) Zucker Female Rats on the Same Diets, Lipids 25, 517–522.

    PubMed  CAS  Google Scholar 

  28. Phinney, S.D., Fisler, J.S., Tang, A.B., and Warden, C.H. (1994) Liver Fatty Acid Composition Correlates with Body Fat and Sex in a Multigenic Mouse Model of Obesity. Am. J. Clin. Nutr. 60, 61–67.

    PubMed  CAS  Google Scholar 

  29. Clandinin, M.T., Cheema, S., Pehowich, D., and Field, C.J. (1996) Effect of Polyunsaturated Fatty Acids in Obese Mice, Lipids 31, S13-S22.

    PubMed  CAS  Google Scholar 

  30. Phinney, S.D. (1996) Arachidonic Acid Maldistribution in Obesity, Lipids 31, S271-S274.

    PubMed  CAS  Google Scholar 

  31. Brenner, R.R. (1981) Nutritional and Hormonal Factors Influencing Desaturation of Essential Fatty Acids, Progr. Lipid Res. 20, 41–47.

    Article  CAS  Google Scholar 

  32. Brenner, R.R. (1991) Endocrine Control of Fatty Acid Desaturation, Biochem. Soc. Trans. 18, 773–775.

    Google Scholar 

  33. Brenner, R.R. (1977) Regulatory Function of Delta-6-desaturase—Key Enzyme of Polyunsaturated Fatty Acids Synthesis, Adv. Exp. Med. Biol. 83, 85–101.

    Article  PubMed  CAS  Google Scholar 

  34. Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, S.M., Kupcho-Sandberg, S., and Brown, D.M. (1983) Arachidonic Acid Deficiency in Streptozocin-Induced Diabetes, Proc. Natl. Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, Y.S., Horrobin, D.F., Manku, M.S., Mitchell, J., and Ryan, M.A. (1984) Tissue Phospholipid Fatty Acid Compsition in the Diabetic Rat, Lipids 19, 367–370.

    PubMed  CAS  Google Scholar 

  36. Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relation Between Insulin Sensitivity and the Fatty Acid Composition of Skeletal-Muscle Phospholipids, N. Engl. J. Med. 328, 238–244.

    Article  PubMed  CAS  Google Scholar 

  37. Cunnane, S.C., Huang, Y.-S., and Manku, M.S. (1985) Triacylglycerol Content of Arachidonic Acid Varies Inversely with Total Triacylglycerol in Liver and Plasma, Biochim. Biophys. Acta 876, 183–186.

    Google Scholar 

  38. Decsi, T., Molnár, D., and Koletzko, B. (1998) The Effect of Under- and Overnutrition on Essential Fatty Acid Metabolism in Childhood, Eur. J. Clin. Nutr. 52, 541–548.

    Article  PubMed  CAS  Google Scholar 

  39. Frelut, M.L., Therond, P., Camuso, M.C., Benali, K., Cathelineau, L., and Navarro, J. (1994) Inhibited Plasma Delta 6 Desaturase Activity and Abnormal Membrane Essential Fatty Acid Pattern in Obese Children. Impact of Weight Loss (abstract), Acta Paediatr. Hung. 34, 219.

    Google Scholar 

  40. Demmelmair, H., Sauerwald, T., Koletzko, B., and Richter, T. (1997) New Insights into Lipid and Fatty Acid Metabolism via Stable Isotopes, Eur. J. Pediatr. 156 Suppl. 1, S70-S74.

    Article  PubMed  CAS  Google Scholar 

  41. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian Delta-6 Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Decsi.

About this article

Cite this article

Decsi, T., Csabi, G., Török, K. et al. Polyunsaturated fatty acids in plasma lipids of obese children with and without metabolic cardiovascular syndrome. Lipids 35, 1179–1184 (2000). https://doi.org/10.1007/s11745-000-0634-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0634-7

Keywords

Navigation