Skip to main content
Log in

Effect of Self-Assemblies on the Dynamics of the Briggs–Rauscher Reaction

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The study involves the dynamic evolution of the Briggs–Rauscher (BR) reaction in the presence of various surfactants—SDS (sodium dodecyl sulphate) as anionic, CTAB (cetyl trimethylammonium bromide) as cationic and TritonX-100 [4-(1,1,3,3-(tetramethylbutyl) phenyl polyethylene glycol] as a neutral one in single as well as mixed mode conditions (SDS + TX-100 and CTAB + TX-100). The reaction has been monitored potentiometrically at 30 °C under CSTR conditions. These surfactants affect the reaction dynamics to an extent which depends on the nature and concentration of the surfactant and the formation of their self-assemblies. The experimental findings indicate that the oscillatory behavior of the BR reaction in the presence of surfactants is due to the efficacy of organized surfactant assemblies to selectively distribute the key species involved in the reaction, and their interaction with the counter ions in cases of ionic micelles. The study reveals that the evolution of oscillatory behavior is a characteristic feature of the surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Briggs TS, Rauscher WC. An oscillating iodine clock. J Chem Edu. 1973;50:496.

    Article  CAS  Google Scholar 

  2. Furrow SD. Comparison of several substrates in the Briggs-Rauscher oscillating system. J Phys Chem. 1995;99:11131–40.

    Article  CAS  Google Scholar 

  3. Furrow SD, Cervellati R, Amadori G. New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A. 2002;106:5841–50.

    Article  CAS  Google Scholar 

  4. Furrow SD. Briggs-Rauscher oscillator with methylmalonic acid. J Phys Chem. 1981;85:2026–31.

    Article  CAS  Google Scholar 

  5. Rosokha SV, Tikhonova LP. Oscillatory Briggs-Rauscher reactions involving macrocyclic transition-metal complexes. Theor Exp Chem. 1994;30:136–9.

    Article  Google Scholar 

  6. Tikhonova PL, Rosokha SV, Bakay AE. The Briggs-Rauscher oscillatory reactions catalyzed by nickel macrocyclic complexes Systems. React Kinet Catal Lett. 1998;63:129–36.

    Article  CAS  Google Scholar 

  7. Kim K, Lee DJ, Shin KJ. A simplified model for the Briggs-Rauscher reaction mechanism. J Chem Phys. 2002;117:2710.

    Article  CAS  Google Scholar 

  8. Vukojevic V, Sorensen PG, Hynne F. Predictive value of a model of the Briggs-Rauscher reaction fitted to quenching experiments. J Phys Chem. 1996;100:17175–85.

    Article  CAS  Google Scholar 

  9. Helenius A, Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975;415:29–79.

    Article  CAS  Google Scholar 

  10. Lichtenberg D, Robson RJ, Dennis EA. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta. 1983;737:285–304.

    Article  CAS  Google Scholar 

  11. Silvius JR. Solubilization and functional reconstitution of bio membrane components. Annu Rev Biophys Biomol Struct. 1992;21:323–48.

    Article  CAS  Google Scholar 

  12. Tanford C. The hydrophobic effect and the organization of living matter. Science. 1978;200:1012–8.

    Article  CAS  Google Scholar 

  13. Zulauf M, Furstenberger U, Grabo M, Jaggi P, Regenass M, Rosenbusch JP. Critical micellar concentrations of detergents. Meth Enzymol. 1989;172:528–38.

    Article  CAS  Google Scholar 

  14. Vanag VK, Hanazaki I. Effect of light on the Belousov-Zhabotinsky reaction in water-in-oil microemulsions of aerosol OT in octane. J Phys Chem A. 1997;101:2147–52.

    Article  CAS  Google Scholar 

  15. Cavasino FP, Cervellati R, Lombardo R, Liveri MLT. Micellar effects on the kinetics of cerium (IV) oxidation and the cerium (IV) catalyzed Belousov-Zhabotinsky reaction with methyl-, ethyl-, or benzylmalonic Acid. J Phys Chem B. 1999;103:4285–91.

    Article  CAS  Google Scholar 

  16. Maritato M, Nikles J, Romsted LS, Tramontin M. Micellar effects on Belousov-Zhabotlnsky oscillations with Trls(2,2′-blpyridyl)ruthenium(II) as a catalyst. J Phys Chem. 1985;89:1341–4.

    Article  CAS  Google Scholar 

  17. Gull U, Peerzada GM, Ganaie NB, Rashid S. Effect of self-assemblies on the dynamics of Phloroglucinol-based Belousov-Zhabotinsky reaction: analytical approach. Colloid Polym Sci. 2016;12:421–31.

    Article  Google Scholar 

  18. Farhad NA, Peerzada GM, Ganaie NB. Effect of surfactants on the oscillatory behaviour of metal-ion catalyzed pyrogallol based Belousov-Zhabotinsky reaction. Chem Sci Trans. 2014;3(4):1474–82.

    Google Scholar 

  19. Najar MH, Ahmed A, Rather GM. Effect of self-assemblies of various surfactants in their single and mixed states on the BZ oscillatory reaction. Int J Chem Kinet. 2010;42(11):659–68.

    Article  CAS  Google Scholar 

  20. Rustici M, Lombardo R, Mangone M, Sbriziolo C, Zambrano V, Liveri MLT. Effects of non-ionic micelles on transient chaos in an unstirred Belousov-Zhabotinsky reaction. Faraday Discuss. 2001;120:39–51.

    Article  CAS  Google Scholar 

  21. Epstein IR, Vanag VK. Complex patterns in reactive microemulsions: self-organized nanostructures. Chaos. 2005;15:047510–7.

    Article  Google Scholar 

  22. Kaminaga A, Vanag VK, Epstein IR. Black spots in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system. J Chem Phys. 2005;122:174706–11.

    Article  Google Scholar 

  23. Paul AJ. Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction. J Phys Chem B. 2005;109:9639–44.

    Article  CAS  Google Scholar 

  24. Sciascia L, Rossi F, Sbriziolo C, Liveri MLT, Varsalona R. Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phy Chem Chem Phys. 2010;12:11674–82.

    Article  CAS  Google Scholar 

  25. Israelachvilli JN. Intermolecular and surfaces forces. 2nd ed. New York: Academic; 1995.

    Google Scholar 

  26. Stark PE, Leff PD, Milheim SG, Kropf A. Physical studies of CHAPS, a new detergent for the study of visual pigments. J Phys Chem. 1984;88:6063–7.

    Article  CAS  Google Scholar 

  27. Hjelmeland LJ, Nebert DW, Osborne JC. Sulfobetaine derivatives of bile acids: non-denaturing surfactants for membrane biochemistry. Anal Biochem. 1983;130:72–82.

    Article  CAS  Google Scholar 

  28. Moulik SP. Micelles: self organized surfactant assemblies. Curr Sci. 1996;71:368–76.

    CAS  Google Scholar 

  29. Warr GG, Griesser FJ. Determination of micelle size and polydispersity by fluorescence quenching. Theory and numerical results. J Chem Soc Faraday Trans. 1986;82:1813–28.

    Article  CAS  Google Scholar 

  30. Bales BL, Almgren M. Fluorescence quenching of pyrene by Copper(I1) in sodium dodecyl sulfate micelles. Effect of micelle size as controlled by surfactant concentration. J Phys Chem. 1995;99:15153–62.

    Article  CAS  Google Scholar 

  31. Dutt GB. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time- resolved fluorescence anisotropy approach. Langmuir. 2005;21:10391–7.

    Article  CAS  Google Scholar 

  32. Hoffmamm H, Oetter G, Schwander B. The aggregation behaviour of tetradecyldimethylaminoxide. Prog Colloidal Polym Sci. 1987;73:95–106.

    Article  Google Scholar 

  33. Rharbi Y, Chen L, Winnik MA. Exchange mechanisms for sodium dodecyl sulfate micelles: high salt concentration. J Am Chem Soc. 2004;126:6025–34.

    Article  CAS  Google Scholar 

  34. Seimiarczuk A, Ware WR, Liu YS. A novel method for determining size distributions in polydisperse micelle systems based on the recovery of fluorescence lifetime distributions. J Phys Chem. 1993;97:8082–91.

    Article  Google Scholar 

  35. Chattopadhyay A, Harikumar KG. Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett. 1996;391:199–202.

    Article  CAS  Google Scholar 

  36. Shah IA, Peerzada GM, Ganaie NB, Dar NA. A kinetic study on catechol-based Belousov-Zhabotinsky reaction. Int J Chem Kinet. 2012;45:141–51.

    Article  Google Scholar 

  37. Ganaie NB, Peerzada GM. Effect of initial reagent concentrations on the oscillatory behavior of the BZ reaction in a batch reactor. Int J Chem Kinet. 2009;41:650–7.

    Article  CAS  Google Scholar 

  38. Cooke DO. The hydrogen peroxide-iodic acid-manganese(II)-acetone oscillating system: further observations. Int J Chem Kinet. 1980;12:683–98.

    Article  CAS  Google Scholar 

  39. Roux JC, Vidal C. Synergistics—Far from equilibrium. Pacault A, Vidal C (eds) Berlin: Springer; 1979.

  40. Roux JC, Vidal C. On a method of experimental study of periodic reactions. Nouv J Chim. 1979;3:247.

    CAS  Google Scholar 

  41. Boissonade J, De Kepper P. Transitions from bistability to limit cycle oscillations: theoretical analysis and experimental evidence in an open chemical system. J Phys Chem. 1980;84:501–6.

    Article  CAS  Google Scholar 

  42. Furrow SD, Noyes RM. The oscillatory Briggs-Rauscher reaction: examination of subsystems. J Am Chem Soc. 1982;104:38–42.

    Article  CAS  Google Scholar 

  43. Rawat SS, Mukherjee S, Chatopadhyay A. Micellar organization and dynamics: a wavelength selective fluorescence approach. J Phys Chem B. 1997;101:1922–9.

    Article  CAS  Google Scholar 

  44. Rossi F, Varsalona R, Liveri MLT. New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem Phys Lett. 2008;463:6378–82.

    Article  Google Scholar 

  45. Rossi F, Lombardo R, Sciascia L, Sbriziolo C, Liveri MLT. Spatio- temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. J Phys Chem B. 2008;112(24):7244–50.

    Article  CAS  Google Scholar 

  46. Sciascia L, Lombardo R, Liveri MLT. Nonlinear response of a batch BZ oscillator to the addition of the anionic surfactant sodium dodecyl sulfate. J Phys Chem B. 2007;111(6):1354–60.

    Article  CAS  Google Scholar 

  47. Yoshimoto M, Shirahama H, Kurosawa S, Naito M. Periodic change of viscosity and density in an oscillating chemical reaction. J Chem Phys. 2004;120:7067–70.

    Article  CAS  Google Scholar 

  48. Vanag VK, Epstein IR. Pattern formation in a tunable reaction-diffusion medium: the BZ reaction in an aerosol OT microemulsion. Phys Rev Lett. 2001;87:228301–4.

    Article  CAS  Google Scholar 

  49. Cervellati R, Mongiorgi B. Inhibition of chemical oscillations by bromide ion in the Briggs-Rauscher reaction. Int J Chem Kinet. 1998;30:641–6.

    Article  CAS  Google Scholar 

  50. Cervellatia R, Furrow SD. Effect of additives on the oscillations of the Briggs-Rauscher reaction. Russ J Phys Chem A. 2013;87:2121–6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from SERB Govt. of India in the form of Major Research Project No. SB/S1/PC-23/2014 sanctioned on 20 August 2015 and to DST-FIST Funding to the department. The authors also acknowledge the Head, Department of Chemistry, for infrastructural facilities used for carrying out this work. The authors also declare that they have no conflict of interest with anybody regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Bashir.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, N.A., Peerzada, G.M., Bashir, N. et al. Effect of Self-Assemblies on the Dynamics of the Briggs–Rauscher Reaction. J Surfact Deterg 20, 913–921 (2017). https://doi.org/10.1007/s11743-017-1956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1956-6

Keywords

Navigation