Skip to main content
Log in

Synthesis of Succinic Gemini Surfactants and the Effect of Stereochemistry on Their Monolayer Behaviors

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this work, succinic gemini surfactants, dl- and meso-2,3-bis(alkyl)succinic acids (alkyl: C6H13–C13H27), were successfully synthesized by oxidative coupling of enolates of fatty acid tert-butyl esters with copper(II) bromide followed by treatment with CF3COOH. Focusing on the influence of stereochemistry (dl- and meso-) of succinic geminis, their monolayer behaviors at the air–water interface were explored using surface pressure–area (ΠA) isotherms, the compression modulus of monolayers (ε s), and Brewster angle microscope (BAM) analysis. meso-2,3-Bis(undecyl)succinic acid showed a unique isotherm where the surface pressure drastically decreased at A = ~0.56 nm2 (Π = 21.9 mN m−1) regardless of compression rates and subphase temperatures, while dl-isomer showed the common isotherm of gas → liquid-expanded → liquid-condensed phase transitions. BAM analysis on meso-2,3-bis(undecyl)succinic acid films at the air–water interface showed that small islands of aggregates appear just after the maximum pressure (A = ~0.56 nm2), and on further compression needle-shaped assemblies appear that can grow in size. It was reasonably concluded that hydrophobic interactions can operate more effectively in meso-isomers than in dl-isomers, and that meso-molecules can “jump up” to cause a transition from monolayer to bilayer. This is the first finding of the “jumping-up” phenomenon of gemini surfactants having meso-stereochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menger FM, Littau CA (1991) Gemini-surfactants: synthesis properties. J Am Chem Soc 113:1451–1452. doi:10.1021/ja00004a077

    Article  CAS  Google Scholar 

  2. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1906–1920. doi:10.1002/1521-3773(20000602)39:11%3C1906::AID-ANIE1906%3E3.0.CO;2-Q

    Article  Google Scholar 

  3. Hait SK, Moulik SP (2002) Gemini surfactants: a distinct class of self-assembling molecules. Curr Sci 82:1101–1111. http://www.iisc.ernet.in/currsci/may102002/1101.pdf

  4. Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97:205–253. doi:10.1016/S0001-8686(01)00069-0

    Article  CAS  Google Scholar 

  5. Zana R, Xia J (2004) Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications. Surfactant Science Series 117, Marcel Dekker, New York. doi:10.1201/9780203913093

  6. Hana Y, Wang Y (2011) Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys Chem Chem Phys 13:1939–1956. doi:10.1039/c0cp01196g

    Article  Google Scholar 

  7. Kumara N, Tyagi R (2014) Industrial applications of dimeric surfactants: a review. J Disper Sci Technol 35:205–214. doi:10.1080/01932691.2013.780243

    Article  Google Scholar 

  8. Zhu Y-P (2004) Structure-performance relationships in gemini surfactants. Surfactant Science Series 117, Marcel Dekker, New York, pp 281–300. doi:10.1201/9780203913093

  9. Franses EI, Prosser AJ, Infante MR, Perez L, Pinazo A (2004) Adsorption and surface tension behavior of gemini surfactants at air–water, oil–water, and solid–water interfaces. Surfactant Science Series 117, Marcel Dekker, New York, pp 65–92. doi:10.1201/9780203913093

  10. Tyagi P, Tyagi R (2009) Synthesis, structural properties and applications of gemini surfactants: a review. Tenside Surf Det 46:373–382. doi:10.3139/113.110045

    Article  CAS  Google Scholar 

  11. Sommerdijk NAJM, Hoeks THL, Synak M, Feiters MC, Nolte RJM, Zwanenburg B (1997) Stereodependent fusion and fission of vesicles: calcium binding of synthetic gemini phospholipids containing two phosphate groups. J Am Chem Soc 119:4338–4344. doi:10.1021/ja962303s

    Article  CAS  Google Scholar 

  12. Bello C, Bombelli C, Borocci S, di Profio P, Mancini G (2006) Role of the spacer stereochemistry on the aggregation properties of cationic gemini surfactants. Langmuir 22:9333–9338. doi:10.1021/la061230f

    Article  CAS  Google Scholar 

  13. Caracciolo G, Pozzi D, Mancini G, Caminiti R (2007) Role of the spacer stereochemistry on the structure of solid-supported gemini surfactants aggregates. Langmuir 23:10040–10043. doi:10.1021/la7014995

    Article  CAS  Google Scholar 

  14. Luchetti L, Mancini G (2000) NMR investigation on the various aggregates formed by a gemini chiral surfactant. Langmuir 16:161–165. doi:10.1021/la990713z

    Article  CAS  Google Scholar 

  15. Sugiyasu K, Tamaru S, Takeuchi M, Berthier D, Huc I, Oda R, Shinkai S (2002) Double helical silica fibrils by sol-gel transcription of chiral aggregates of gemini surfactants. Chem Commun 2002:1212–1213. doi:10.1039/B202799M

    Article  Google Scholar 

  16. Shankar BV, Patnaik A (2007) A new pH and thermo-responsive chiral hydrogel for stimulated release. J Phys Chem B 111:9294–9300. doi:10.1021/jp073275a

    Article  CAS  Google Scholar 

  17. Shankar BV, Patnaik A (2007) Chiral discrimination of a Gemini-type surfactant with rigid spacer at the air–water interface. J Phys Chem B 111:11419–11427. doi:10.1021/jp074279i

    Article  CAS  Google Scholar 

  18. Shankar BV, Patnaik A (2008) Equilibrium structure and dynamics of (2R,3R)-(+)-bis(decyloxy)succinic acid at the air–water interface. Langmuir 24:758–766. doi:10.1021/la701998c

    Article  CAS  Google Scholar 

  19. Shankar BV, Patnaik A (2008) Chiral cones and vesicles from Gemini-type fatty acid-heteroditopic amine mixtures. Soft Matter 4:1713–1717. doi:10.1039/b802425a

    Article  CAS  Google Scholar 

  20. Zoubir E-H, Mancini G, Ribo JM, Sorrenti A (2010) Propagation of chirality from gemini surfactants to porphyrin/surfactant heteroaggregates: transcription of the stereochemical information into an organizational feature. New J Chem 34:260–266. doi:10.1039/B9NJ00282K

    Article  Google Scholar 

  21. Liang Y, Hu Z, Cao D (2014) Surface adsorption and aggregation properties of novel l-lysine-based gemini surfactants. J Surf Det 17:693–701. doi:10.1007/s11743-013-1541-6

    Article  CAS  Google Scholar 

  22. Harvey N, Rose P, Porter NA, Huff JB, Arnett EM (1988) Monolayer properties of eight diastereomeric two-chain surfactants at air/water interface: a resultant of intramolecular and intermolecular forces. J Am Chem Soc 110:4395–4399. doi:10.1021/ja00221a046

    Article  CAS  Google Scholar 

  23. Porter NA, Ok D, Huff JB, Adams CM, McPhail AT, Kim K (1988) Equilibration of diastereomeric two-chain surfactants. Hydrophobic control of organic stereochemistry. J Am Chem Soc 110:1896–1901. doi:10.1021/ja00214a038

    Article  CAS  Google Scholar 

  24. Buijnsters PJJA, Rodriguez CLG, Willighagen EL, Sommerdijk NAJM, Kremer A, Camilleri P, Feiters MC, Nolte RJM, Zwanenburg B (2002) Cationic gemini surfactants based on tartaric acid: synthesis, aggregation, monolayer behavior, and interaction with DNA. Eur J Org Chem 2002:1397–1406. doi:10.1002/1099-0690(200204)2002:8%3C1397::AID-EJOC1397%3E3.0.CO;2-6

    Article  Google Scholar 

  25. Ryhanen SJ, Pakkanen AL, Säily MJ, Bello C, Mancini G, Kinnunen PKJ (2002) Impact of the stereochemical structure on the thermal phase behavior of a cationic gemini surfactant. J Phys Chem B 106:11694–11697. doi:10.1021/jp015623t

    Article  Google Scholar 

  26. Silva SG, Fernandes RF, Marques EF, Vale MLC (2012) Serine-based bis-quat gemini surfactants: synthesis and micellization properties. Eur J Org Chem 2012:345–352. doi:10.1002/ejoc.201101118

    Article  Google Scholar 

  27. Pinazo A, Pons R, Perez L, Infante MR (2011) Amino acids as raw material for biocompatible surfactants. Ind Eng Chem Res 50:4805–4817. doi:10.1021/ie1014348

    Article  CAS  Google Scholar 

  28. Moran C, Perez L, Pons R, Pinazo A, Infante MR (2010) Amino acids, lactic acid and ascorbic acid as raw materials for biocompatible surfactants. In: Kjellin M, Johansson I (eds) Surfactants from renewable resources, Wiley, Chichester. doi:10.1002/9780470686607.ch5

  29. Menger FM, Mbadugha BNA (2001) Gemini surfactants with a disaccharide spacer. J Am Chem Soc 123:875–885. doi:10.1021/ja0033178

    Article  CAS  Google Scholar 

  30. Pestman JM, Terpstra KR, Stuart MC et al. (1997) Nonionic bolaamphiphiles and gemini surfactants based on carbohydrates. Langmuir 13:6857–6860. doi:10.1021/la970681k

    Article  CAS  Google Scholar 

  31. Nakanishi F, Minamikawa H (1990) Langmuir-Blodgett films of diastereomeric tartaric acid derivatives. Sen’i Gakkaishi 46:409–411. doi:10.2115/fiber.46.9_409

    Article  CAS  Google Scholar 

  32. Kawase T, Saito I, Oida T (2011) Effects of hydrophobic chain length on temperature dependence of monolayer behavior of ester-type tartaric geminis. J Oleo Sci 60:61–69. doi:10.5650/jos.60.61

    Article  CAS  Google Scholar 

  33. Kawase T, Saito I, Oida T (2013) Monolayer behavior of asymmetrical ester type tartaric gemini. J Oleo Sci 62:371–380. doi:10.5650/jos.62.371

    Article  CAS  Google Scholar 

  34. Aisaka T, Oida T, Kawase T (2007) A novel synthesis of succinic acid type Gemini surfactant by the functional group interconversion of corynomicolic acid. J Oleo Sci 56:633–644. doi:10.5650/jos.56.633

    Article  CAS  Google Scholar 

  35. Quermann R, Meletz R, Schafer H (1993) Conversion of fatty acid methyl esters into dialkylated succinic esters by oxidative coupling of their enolates. Liebigs Ann Chem 1993:1219–1223. doi:10.1002/jlac.19931991011977

    Article  Google Scholar 

  36. Andrés JM, Pedrosa R, Pérez A, Pérez-Encabo A (2001) Diastereoselective synthesis of enantiopure γ-amino-β-hydroxy acids by Reformatsky reaction of chiral α-dibenzylamino aldehydes. Tetrahedron 57:8521–8530. doi:10.1016/S0040-4020(01)00804-3

    Article  Google Scholar 

  37. Kajiyama T, Morimoto N, Uchida M, Oishi Y (1989) Static viscoelastic characteristics-aggregation structure relationships of monolayers at air–water interface. Chem Lett 18:1047–1050. doi:10.1246/cl.1989.1047

    Article  Google Scholar 

  38. Kajiyama T, Oishi Y, Uchida M, Morimoto N, Ishikawa J, Tanimoto Y (1992) Evaluation of melting and crystalline relaxation temperatures of fatty acids monolayers on the water surface and their importance for molecular aggregation states in monolayers. Bull Chem Soc Jpn 65:864–870. doi:10.1246/bcsj.65.864

    Article  CAS  Google Scholar 

  39. Vollhardt D, Siegel S, Cadenhead DA (2004) Characteristic features of hydroxystearic acid monolayers at the air/water interface. J Phys Chem B 108:17448–17456. doi:10.1021/jp048304l

    Article  CAS  Google Scholar 

  40. Neimert-Andersson K, Blomberg E, Sornfai P (2004) Stereoselective synthesis of polyhydroxy surfactants. Stereochemical influence on langmuir monolayers. J Org Chem 69:3746–3752. doi:10.1021/jo0357566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Mitsuya Kouno at the Advanced Technology Center of the Kyoto Institute of Technology is thanked for performing the elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuzo Kawase.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawase, T., Kagawa-Ohara, M., Aisaka, T. et al. Synthesis of Succinic Gemini Surfactants and the Effect of Stereochemistry on Their Monolayer Behaviors. J Surfact Deterg 18, 615–627 (2015). https://doi.org/10.1007/s11743-015-1682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1682-x

Keywords

Navigation