Skip to main content
Log in

Cadmium effect on hydrogen peroxide, gluthatione and phytochelatins levels in potato tuber

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Short-term treatment of potato tuber (Solanum tuberosum L.) dises with CdCl2 (1mM) induced an oxidative stress, manifested by higher levels of H2O2, and activated the synthesis of phytochclatins ((γ-Glu-Cys)n-Gly): PC2, PC3 and PC4. If in the tissues with a lower GSH level, the oxidative stress was induced by treatment with 3-aminotriazol (AT), or with AT and H2O2, the elevation of H2O2 and GSH levels and then some accumulation of thiols, including PC2, PC3 and PC4, were observed. However, this increase of PC concentration was considerably lower when compared with the effects brought about by Cd+2 treatment. If such a procedure of evoking subsequent moderate oxidative stress in tissues preceded Cd-treatment, a marked limitation of PC synthesis was observed. The presented results support the role of H2O2 as the second messenger in activating GSH synthesis and thus suggest a possibility of redox type regulation mechanism of PCs synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOS:

active oxygen species

AT:

3-amino-1,2,4-triazol

BSO:

buthionine sulfoximine

CAT:

catalase

CdS :

soluble Cd content

CdB :

bound cadmium content

GSH:

glutathione

HPLC:

high performance liquid chromatography

MD:

menadione

OS:

oxidative stress

PCn :

phytochelatins

References

  • Apostol I., Heinstein, P.F. and Low P.S. 1989. Rapid stimulation of an oxidative burst elicitation of cultured plant cells. Plant Physiol. 90: 109–116.

    PubMed  CAS  Google Scholar 

  • Becana M., P. Aparcio-Tejo J.J. Irigoyen and M. Sanchez-Diaz 1986. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 82: 1169–1171.

    PubMed  CAS  Google Scholar 

  • Delhaize E., P.J. Jackson L.D. Lujan and N.J. Robinson 1989. Poly(γ-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium: role in cadmium tolerance. Plant Physiol. 89: 700–706.

    PubMed  CAS  Google Scholar 

  • Ernst W.H.O., J.A.C. Verkleij and H. Schat 1992. Metal tolerance in plants. Acta Bot. Neerl. 41: 229–248.

    CAS  Google Scholar 

  • Fry S.C. 1995. Polysaccharide-modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 497–520.

    Article  CAS  Google Scholar 

  • Fry S.C., Miller J.G. 1989. H2O2 — dependent cross-linking of feruloyl-pectines in vivo. Food Hydrocolloids 1: 395–397.

    Article  Google Scholar 

  • Fujita M, and T. Kawanishi.1987. Cd-binding complexes from the root tissues of various higher plants cultivated in Cd+2-containing medium. Plant Cell Physiol. 28: 379–382.

    CAS  Google Scholar 

  • Goa J. 1953. A micro biuret method for protein determination. Scand. J. Clin. Lab. 5: 218–222.

    CAS  Google Scholar 

  • Griffith O.W. and A. Meister 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n butyl homocysteine sulfoximine). J. Biol. Chem. 254: 7558–7560.

    PubMed  CAS  Google Scholar 

  • Grill E., Zenk M.H. Winnacker E-L. 1985 Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.

    Article  CAS  PubMed  Google Scholar 

  • Grill E., S. Löffler, E-L. Winnacker, M.H. Zenk 1989. Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from Gluthatione by a specific γ-glutamylcysteine dipeptydyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86: 6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Gupta C.G., and P.B. Goldsbrough 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 97: 306–312.

    PubMed  CAS  Google Scholar 

  • Halliwell B. 1978. Lignin synthesis: the generation of hydrogen peroxide and superoxide by hors redish peroxide and its stimulation by manganese (II) and phenols. Planta 140: 81–88.

    Article  CAS  Google Scholar 

  • Harmens H., P.R. Den Hartog, W.M. Ten Bookum and J.A.C. Verkleij 1993. Increase zinc tolerance in Silene vulgaris (Moech) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103: 1305–1309.

    PubMed  CAS  Google Scholar 

  • Heinrickson R.L. and S.C. Meredith 1984. Amino acid analysis by reverse-phase high-performance liquid chromatoraphy: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136: 65–74.

    Article  Google Scholar 

  • Hirs C.H.W. 1967. Determination of cysteine as cysteic acid. Methods Enzymol. 11: 59–62.

    Article  CAS  Google Scholar 

  • Howden R., P.B. Goldsbrough, C.R. Andersen and C.S. Cobbett 1995. Cadmium-sensitive, cad-1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107: 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  • May M.J., and C.J. Leaver 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103: 621–627.

    PubMed  CAS  Google Scholar 

  • Miszalski Z., Botton B., Turnau K. 1996. New SOD isoform in Rhizopogon roseolus (Corda in Sturm) in the presence of cadmium. Acta Physiol. Plant. 18: 147–151.

    Google Scholar 

  • Monk L.S., Fagerstedt K.V., Crawford M.M. 1989. Oxygen toxity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456–459.

    CAS  Google Scholar 

  • Neumann D., O. Lichtenberger, D. Günther, K. Tschiersch and L. Nover 1994. Heat-shock induce heavy-metal tolerance in higher plants. Planta 194: 360–367.

    Article  CAS  Google Scholar 

  • Prasad T.K., M.D. Anderson, B.A. Martin and C.R. Stewart 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Ramasarma T. 1982. Generation of H2O2 in biomembranes. Biochim. Biophys. Acta 694: 69–93.

    PubMed  CAS  Google Scholar 

  • Rauser W.E. 1995. Phytochelatins and related peptides. Plant Physiol. 109: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W.E., R. Schupp and H. Rennenberg 1991. Cysteine, γ-glutamylcysteine, glutathione levels in maize seedlings. Plant Physiol. 97: 128–138.

    PubMed  CAS  Google Scholar 

  • Reese N.R., Wagner G.J. 1987. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Biochem. J. 241: 641–647.

    PubMed  CAS  Google Scholar 

  • Robinson N.J., Jackson P.J. 1986. Metallothionein-like metal complexes in angiosperms: their structure and function. Physiol. Plant. 37: 499–506.

    Article  Google Scholar 

  • Rűegsegger A., D. Schmutz and C. Brunold 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93: 1579–1584.

    PubMed  Google Scholar 

  • Rűegsegger, A. and C. Brunold. 1992. Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol. 99: 428–433.

    PubMed  Google Scholar 

  • Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12.

    PubMed  CAS  Google Scholar 

  • Showalter A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell, 5; 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Smith I.K. 1985. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitor. Plant Physiol. 79: 1044–1047.

    PubMed  CAS  Google Scholar 

  • Somashekaraiah B.V., Padmaja K. and Prasad A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant. 85: 85–89.

    Article  CAS  Google Scholar 

  • Steffens J.C., D.F. Hunt and B.G. Williams 1986. Accumulation of non-protein metal- binding polypeptides (γ-glutamylcysteinyl)n -glycine in selected cadmium-resistant tomato cells. J. Biol. Chem. 261: 13879–13882.

    PubMed  CAS  Google Scholar 

  • Stroiński A., J. Floryszak-Wieczorek and A. Woźny 1990. Effects of cadmium on the host- pathogen system. I. Alterations of potato leaves and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186: 43–54.

    Google Scholar 

  • Stroiński A., A. Woźny and J. Floryszak-Wieczorek 1990. Effects of cadmium on the host-pathogen system. II. Alterations of potato tuber and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186: 229–238.

    Google Scholar 

  • Stroiński A. and H. Bandurska 1996. Proceedings of Conference: Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych, Eds. S. Grzesiak and Z. Miszalski, pp 191–198 (English abstract), Kraków, 1996. Kraków.

  • Stroiński, A, and M Kozłowska 1997. Cadmium-induced oxidative stress in potato tuber. Acta Soc. Bot. Pol. 66: in print.

  • Sutherland M.W. 1991. The generation of oxygen radicals during host plant responses to infection. J. Plant Pathol. 39: 79–93.

    CAS  Google Scholar 

  • Tukendorf A. and W.E. Rauser 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70: 155–166.

    Article  CAS  Google Scholar 

  • Vera-Estrella R., E. Blumwald and V.J. Higgins 1992. Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Plant Physiol. 99: 1208–1215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroiński, A., Zielezińska, M. Cadmium effect on hydrogen peroxide, gluthatione and phytochelatins levels in potato tuber. Acta Physiol Plant 19, 127–135 (1997). https://doi.org/10.1007/s11738-997-0029-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0029-2

Key words

Navigation