Skip to main content
Log in

Production of potential anti-inflammatory compounds in cell suspension cultures of Sphaeralcea angustifolia (Cav.) G. Don

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Sphaeralcea angustifolia is used in Mexican traditional medicine to treat inflammatory processes. SCopoletin (SC), TOmentin (TO), and sphaeralcic acid (SA) were reported as the main anti-inflammatory compounds in this species. The aim of this study was to establish in vitro conditions for the development of calli and cell suspension cultures that are the producers of these active compounds. Callus cultures of plant leaf explants were set up using different auxin levels of α-naphthalene acetic acid (NAA) in combination with a constant concentration (0.1 mg L−1) of Kinetin (Kn) in Murashige and Skoog (MS) medium. Optimal combinations for callus induction were 1.0 and 2.0 mg L−1 of NAA. SC, TO, and SA were not detected in callus tissues. Employing a 4 % inoculum in fresh biomass, cell suspension was established from friable callus with 1.0 mg L−1 of NAA in combination with 0.1 mg L−1 of Kn in MS liquid medium (27.4 mM nitrate). The cellular suspension synthesized SC and SA, SC was excreted into the culture medium, while SA was excreted into the culture medium and accumulated in biomass. To improve SC and SA production, total nitrate content was reduced in MS medium. On diminishing nitrate content to 2.74 mM, cellular suspension growth was not modified. SC concentration (0.04 %) was 60-fold higher than that detected in the wild plant (0.00067 %), TO was produced (0.096 %), and SA content (0.0036 %) was not improved. SA production in MS medium with 0.274 mM nitrate (0.004 %) was enriched 12-fold (0.0003 %) in relation to that of the wild plant. The anti-inflammatory effects at 5 h of intraperitoneal (i.p.) administration (100 mg per kg BW) of dichloromethane extracts from the medium (42 ± 3 %) and biomass (39 ± 9.3 %) of S. angustifolia cell suspensions cultivated in MS with 2.74 mM nitrate were similar. The effect of the biomass dichloromethane extract was dose dependent with a median Effective Dose (ED50) of 137.63 mg per kg BW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BW:

Body weight

CFA:

Complete Freund’s adjuvant

CFE:

Carrageenan footpad edema

Dt:

Doubling time

DW:

Dry weight

GI:

Growth index

HPLC:

High-performance liquid chromatography

IL:

Interleukins

i.p.:

Intraperitoneal

Kn:

Kinetin

µ:

Growth rate

MS:

Murashige and Skoog

NAA:

α-Naphthalene acetic acid

SC:

SCopoletin

SA:

Sphaeralcic acid

TO:

TOmentin

TNF-α:

Tumor necrosis factor alpha

TPA:

12-O-tetradecanoyl phorbol-13-acetate

References

  • Aguilar A, Camacho JR, Chino S, Jácquez P, López ME (1994) Herbario Medicinal del Instituto Mexicano del Seguro Social. México: Instituto Mexicano del Seguro Social. p 140–251

  • Alami I, Mari S, Clerivet A (1998) A glycoprotein from Ceratocystis fimbriata F. spp. platani triggers phytoalexin synthesis in Platanus acerifolia cell-suspension cultures. Phytochemistry 48:771–776. doi:10.1016/S0031-9422(97)00892-3

    Article  CAS  Google Scholar 

  • Armstrong GM, Rohrbaugh LM, Rice EL, Wender SH (1970) The effect of nitrogen deficiency on the concentration of caffeoylquinic acids and scopolin in tobacco. Phytochemistry 9:945–948. doi:10.1016/S0031-9422(00)85211-5

    Article  CAS  Google Scholar 

  • Boeris MA, Toso RE, Skliar MI (2004) Actividad antiinflamatoria de Salpichroa origanifolia. Acta Farm Bonaerense 23:138–141

    Google Scholar 

  • Calderón-Rzedowski G and Rzedowski J (2001) Flora fanerogámica del Valle de México. México: Instituto Nacional de Ecología; pp 393–395, 406–408

  • Debergh PC, Zimmerman RH (1993) Micropropagation technology and application, 2nd edn. Kluwer Academic Publishers, México, p 488

    Google Scholar 

  • Filippini R, Piovan A, Innocent G, Caniato R, Cappelletti EM (1998) Production of coumarin compounds by Haplophyllum patavinum in vivo and in vitro. Phytochemistry 49:2337–2340. doi:10.1016/S0031-9422(98)00356-2

    Article  CAS  Google Scholar 

  • Fliniaux M, Gillet-Manceau F, Marty D, Macek T, Monti JP, Jacquin-Dubreuil A (1997) Evaluation of the relation between the endogenous scopoletin and scopolin level of some solanaceous and Papaver cell suspensions and their ability to bioconvert scopoletin to scopolin. Plant Sci 123:205–210. doi:10.1016/S0168-9452(96)04596-7

    Article  CAS  Google Scholar 

  • Fritz C, Palacios N, Fiel R, Stitt M (2006) Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548

    Article  CAS  PubMed  Google Scholar 

  • García-Rodríguez V, Chamorro G, Siordia G, Jiménez-Arellanes A, Chávez MA, Meckes M (2012) Sphaeralcea angustifolia (Cav.) G. Don extract, a potential phytomedicine to treat chronic inflammation. Bol Latinoam Caribe Plant Med Aromat 11(5):454–465

    Google Scholar 

  • Gepdiremen A, Mshvildadze V, Süleyman H, Elias R (2005) Acute antiinflammatory activity of four saponins isolated from ivy: alpha-hederin, derasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema. Phytomedicine 12:440–444

    Article  CAS  PubMed  Google Scholar 

  • Gnonlonfin BGJ, Gbaguidi F, Gbenou JD, Sanni A, Brimer L (2011) Changes in scopoletin concentration in cassava chips from four varieties during storage. J Sci Food Agric 91:2344–2347. doi:10.1002/jsfa.4465

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Mazumder UK, Kumar RS, Sambath R, Gomathi P, Rajeshwar Y, Kakoti BB, Selven VT (2005) Anti-inflammatory, analgesic and antipyretic effects of methanol extract from Bauhinia racemosa stem bark in animal models. J Ethnopharmacol 98:267–273. doi:10.1016/j.jep.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  • Hurtado DV, Merino ME (2001) Cultivo de tejidos vegetales. Editorial Trillas, México, pp 122–126

    Google Scholar 

  • Juárez-Ciriaco M, Román-Ramos R, González-Márquez H, Meckes-Fischer M (2008) Efecto de Sphaeralcea angustifolia sobre la expresión de citocinas pro y antiinflamatorias. LabCiencia Not Tec Lab 2:21–23

    Google Scholar 

  • Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67:379–386. doi:10.1016/j.phytochem.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhong JJ (1997) Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng: nitrogen effects. Enzyme Microb Tech 21:518–524. doi:10.1016/S0141-0229(97)00023-9

    Article  CAS  Google Scholar 

  • Marja K, Caldentery O, Inzé D (2004) Plant cell factories in the post genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440. doi:10.1016/j.tplants.2004.07.006

    Article  Google Scholar 

  • Martínez M (1979) Catálogo de nombres vulgares y científicos de plantas mexicanas. Fondo de la Cultura Económica; p, México, p 429

    Google Scholar 

  • Meckes M, David-Rivera AD, Nava-Aguilar V, Jiménez A (2004) Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema. Phytomedicine 11:446–451. doi:10.1016/j.phymed.2003.06.002

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Mora-Izquierdo A, Nicasio-Torres MP, Sepúlveda-Jiménez G, Cruz-Sosa F (2011) Changes in biomass allocation and phenolic compounds accumulation due to the effect of light and nitrate supply in Cecropia peltata plants. Acta Physiol Plant 33:2135–2147. doi:10.1007/s11738-011-0753-5

    Article  Google Scholar 

  • Morris CJ (2003) Carrageenan-Induced paw edema in the rat and mouse. In: Inflammation Protocols. Springer Protocols, Berlin, p 225, 115–121

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nagella P, Murthy HN (2011) Effects of macroelements and nitrogen source on biomass accumulation and withanolide—a production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell Tiss Org Cult 104:119–124. doi:10.1007/s11240-010-9799-0

    Article  CAS  Google Scholar 

  • Nicasio-Torres MP, Meckes-Fisher M, Aguilar-Santamaría L, Garduño-Ramírez ML, Chávez-Ávila VM, Cruz-Sosa F (2012) Production of chlorogenic acid and isoorientin hypoglycemic compounds in Cecropia obtusifolia calli and in cell suspension cultures with nitrate deficiency. Acta Physiol Plant 1(34):307–316. doi:10.1007/s11738-011-0830-9

    Article  Google Scholar 

  • Osti-Castillo MR, Torres-Valencia JM, Villagómez-Ibarra JR, Castelán-Pelcastre I (2010) Estudio químico de cinco plantas mexicanas de uso común en la medicina tradicional. Bol Latinoam Caribe Plant Med Aromat 9:359–367

    CAS  Google Scholar 

  • Osuna L, Tapia N, Zamilpa A, Jiménez-Ferrer E, Tortoriello J (2014) Biosynthesis stimulation of nor-secotriterpene anxiolytics in cell suspension cultures of Galphimia glauca Cav. Eng Life Sci 14:68–75. doi:10.1002/elsc.201200209

    Article  CAS  Google Scholar 

  • Pérez-Hernández J, González-Cortazar M, Marquina S, Herrera-Ruiz M, Meckes-Fischer M, Tortoriello J, Cruz-Sosa F, Nicasio-Torres MP (2014) Sphaeralcic acid and tomentin, anti-inflammatory compounds produced in cell suspension cultures of Sphaeralcea angustifolia. Planta Med 80:1–6. doi:10.1055/s-0033-1360302

    Article  Google Scholar 

  • Quintero R (1981) Ingeniería Bioquímica: teoría y aplicaciones. Alhambra Mexicana, México, p 332

    Google Scholar 

  • Romero-Cerecero O, Meckes-Fischer M, Zamilpa A, Jiménez-Ferrer JE, Nicasio-Torres P, Pérez-García D, Tortoriello J (2013) Clinical trial for evaluating the effectiveness and tolerability of topical Sphaeralcea angustifolia treatment in hand osteoarthritis. J Ethnopharmacol 147:467–473

    Article  PubMed  Google Scholar 

  • Ryabushkina NA (2005) Synergism of metabolite action in plant responses to stress. Russ J Plant Physiol 52(4):614–621. doi:10.1007/s11183-005-0081-y

    Article  Google Scholar 

  • Sharan M, Taguchi G, Gonda K, Jouke T, Shimosaka M, Hayashida N, Okazaki M (1998) Effects of methyl jasmonate an elicitor in the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Sci 132:13–19. doi:10.1016/S0168-9452(97)00260-4

    Article  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. doi:10.1007/10-2008-103

    CAS  PubMed  Google Scholar 

  • Stafford AM (2002) Plant cell cultures as a source of bioactive small molecules. Curr Opin Drug Discov Dev 5:296–303

    CAS  Google Scholar 

  • Taguchi G, Yoshizawa K, Kodaira R, Hayashida N, Okazaki M (2001) Plant hormone regulation on scopoletin metabolism from culture medium into tobacco cells. Plant Sci 160:905–911. doi:10.1016/S0168-9452(00)00464-7

    Article  CAS  PubMed  Google Scholar 

  • Tapia N, Zamilpa A, Bonfil M, Ventura E, Cruz-Vega D, Del Villar A, Cruz-Sosa F, Osuna L (2013) Effect of the culture medium and biotic stimulation on taxane production in Taxus globosa Schltdl in vitro cultures. Acta Physiol Plant 35(12):3447–3455

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp Bot 56:309–321

    Article  CAS  PubMed  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 72:1–26. doi:10.1007/3-540-45302-4_1

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhong JJ (2009) Effect of initial ammonium concentration on taxoid production and biosynthesis genes expression profile in suspension cultures of Taxus chinensis cells. Eng Life Sci 9(3):261–266. doi:10.1002/elsc.200800109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received financial support provided by FIS-IMSS-PROT/G13/1225 from the Instituto Mexicano del Seguro Social (IMSS, México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Pilar Nicasio-Torres.

Additional information

Communicated by J van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pilar Nicasio-Torres, M., Pérez-Hernández, J., González-Cortazar, M. et al. Production of potential anti-inflammatory compounds in cell suspension cultures of Sphaeralcea angustifolia (Cav.) G. Don. Acta Physiol Plant 38, 209 (2016). https://doi.org/10.1007/s11738-016-2211-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2211-x

Keywords

Navigation