Skip to main content
Log in

Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this pot experiment, cucumbers (Cucumis sativus L.) were grown in a model soil contaminated by three different concentrations of cadmium (40, 160, and 320 mg.kg−1) with different accompanied anions (Cl, SO4 2−). In all variants, the most Cd (90 %) was accumulated in the roots, but higher content in the case of Cl. The distribution of Cd in various cucumber organs was as follows: root > stem > leaf > fruits. However, in variants with higher doses of Cd with SO4 2−, the ratio was changed as follows: root > leaf > stem > fruits. In all variants, least of Cd (max. 1 %) was found in fruits. Variants with the highest Cd doses were significantly different by comparison with all other variants, but higher content was in the case of Cl anion. Stimulation effect on the biomass production and growth of aerial parts and roots of plants in all variants with Cd was observed. Toxicity symptoms, mainly in the presence of leaf chlorosis and yellowing, were more visible in the variants with Cl, in comparison with SO4 2−. The amounts of phenol compounds in leaves rose almost in all variants. Only the variants with higher Cd content with SO4 2− showed slight reduction. One possible explanation of reduced content may be their bounding on Cd. The content of salicylic acid was reduced in all variants with Cd treatment. However, it is difficult to conclude their role in plant defence responses to heavy metal, because their actual defence mechanism is still unclear. However, from these results, we can suggest that the accompanying anion and the form in which Cd exists may have an impact on the involvement of various antioxidant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. and Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44. doi:10.1016/j.sajb.2010.05.003

    Article  CAS  Google Scholar 

  • Auda MA, Ali ES (2010) Cadmium and zinc toxicity effects on growth and mineral nutrients of carrot (Daucus carota). Pak J Bot Pak 42:341–351

    Google Scholar 

  • Bavi K, Kholdebarin B (2011) Effect of cadmium on growth, protein content and peroxidase activity in pea plants. Pak J Bot 43:1467–1470

    CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z et al (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011. doi:10.1016/j.ecoenv.2010.03.009

    Article  CAS  PubMed  Google Scholar 

  • Benabid H, Ghorab MF (2013) Study of the translocation and distribution of cadmium into bean plants (Phaseolus vulgaris) using labelled Cd-109. World J Nano Sci Eng 3:108–111. doi:10.4236/wjnse.2013.33015

    Article  Google Scholar 

  • Białońska D, Zobel AM, Kuraś M et al (2006) Phenolic compounds and cell structure in bilberry leaves affected by emissions from a Zn–Pb smelter. Water Air Soil Pollut 181:123–133. doi:10.1007/s11270-006-9284-x

    Google Scholar 

  • Boualem A, Fleurier S, Troadec C et al (2014) Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One 9:e97963. doi:10.1371/journal.pone.0097963

    Article  PubMed  PubMed Central  Google Scholar 

  • Çanakci S, Karaboga Z (2013) Some physiological and biochemical responses to cadmium in salicylic acid applied cucumber (Cucumis sativus L.) seedlings. Pak J Bot 45:1963–1968

    Google Scholar 

  • Chao Y-Y, Chen C-Y, Huang W-D, Kao CH (2009) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337. doi:10.1007/s11104-009-0161-4

    Article  Google Scholar 

  • Ciećko Z, Kalembasa S, Wyszkowski M, Rolka E (2005) The magnesium content in plants on soil contaminated with cadmium. Pol J Environ Stud 14:365–370

    Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517. doi:10.1016/j.plantsci.2004.09.019

    Article  CAS  Google Scholar 

  • Dutta RK, Maharia RS (2012) Antioxidant responses of some common medicinal plants grown in copper mining areas. Food Chem 131:259–265. doi:10.1016/j.foodchem.2011.08.075

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Xiao D-S et al (2011) Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Sci 181:269–274. doi:10.1016/j.plantsci.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem PPB Société Fr Physiol Végétale 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J et al (2009a) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47:814–821. doi:10.1016/j.plaphy.2009.04.002

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Nicoloso FT, Becker AG et al (2009b) Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed Cucumis sativus L. Biologia (Bratisl) 64:310–318. doi:10.2478/s11756-009-0034-6

    Article  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Netherlands, pp 1–14

    Chapter  Google Scholar 

  • Jia Y, Zhang Y, Li H (2008) Translocation and allocation of cadmium in cucumber and rape seedlings. Chin J Ecol 27:117–121

    Google Scholar 

  • Koren Š, Arčon I, Kump P et al (2013) Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370:125–148. doi:10.1007/s11104-013-1617-0

    Article  CAS  Google Scholar 

  • Kovács V, Gondor OK, Szalai G et al (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19. doi:10.1016/j.jhazmat.2014.07.048

    Article  PubMed  Google Scholar 

  • Krantev A, Yordanova R, Janda T et al (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931. doi:10.1016/j.jplph.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129. doi:10.1111/j.1469-8137.2009.03051.x

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757. doi:10.1104/pp.103.032953

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtyka R, Malkowski E, Kita A, Karcz W (2008) Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Pol J Environ Stud 1:51–56

    Google Scholar 

  • Li XM, Ma LJ, Bu N et al (2013) Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biol Plant 58:195–199. doi:10.1007/s10535-013-0375-4

    Article  Google Scholar 

  • Li S, Yang W, Yang T et al (2015) Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis of Elsholtzia argyi–A Cadmium Accumulating Plant. Int J Phytoremediation 17:85–92. doi:10.1080/15226514.2013.828020

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liao M, Mei L (2012) A review of cucumber under cadmium stress. 2012 Asia Pacific conference on environmental science and technology (APEST 2012), Kuala Lumpur, Malaysia. Adv Biomed Eng 6:443–447

  • Llugany M, Tolrà R, Martín SR et al (2013) Cadmium-induced changes in glutathione and phenolics of Thlaspi and Noccaea species differing in Cd accumulation. J Plant Nutr Soil Sci 176:851–858. doi:10.1002/jpln.201300096

    Article  CAS  Google Scholar 

  • López-Chuken UJ, Young SD, Sánchez-González MN (2010) The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a “free ion activity model” and implications for phytoremediation. Int J Phytoremediation 12:680–696. doi:10.1080/15226510903353161

    Article  PubMed  Google Scholar 

  • Makovnikova J, Barancikova G, Dlapa P, Dercova K (2006) Anorganické kontaminanty V pôdnom ekosystéme. Chem Listy 100:424–432

    CAS  Google Scholar 

  • Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427. doi:10.1016/j.chemosphere.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281. doi:10.1104/pp.102.018457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Moussa HR, El-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320. doi:10.1007/s10535-010-0054-7

    Article  CAS  Google Scholar 

  • Obata H, Umebayashi M (1997) Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J Plant Nutr 20:97–105. doi:10.1080/01904169709365236

    Article  CAS  Google Scholar 

  • Ozkutlu F, Ozturk L, Erdem H et al (2007) Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant Soil 290:323–331. doi:10.1007/s11104-006-9164-6

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T et al (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246. doi:10.1002/jpln.200520573

    Article  Google Scholar 

  • Popova L, Maslenkova L, Yordanova R et al (2008) Salicylic acid protects photosynthesis against cadmium toxicity I pea plants. Gen Appl Plant Physiol 34:133–148

    CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY et al (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem PPB Société Fr Physiol Végétale 47:224–231. doi:10.1016/j.plaphy.2008.11.007

    Article  CAS  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2011) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106. doi:10.1007/s11738-011-0808-7

    Article  Google Scholar 

  • Shamsi IH, Wei K, Jilani G, Zhang G (2007) Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. J Zhejiang Univ Sci B 8:181–188. doi:10.1631/jzus.2007.B0181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977. doi:10.1007/s11738-009-0312-5

    Article  CAS  Google Scholar 

  • Sivaci A, Elmas E (2012) The combined effects of cadmium and salinity on some pigments and total phenolic compounds of Myriophyllum heterophyllum Michx. and Potamogeton crispus L. Afr J Agric Res 26:3813–3818

    Google Scholar 

  • Sofo A, Dichio B, Montanaro G, Xiloyannis C (2010) Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47:602–608. doi:10.1007/s11099-009-0086-4

    Article  Google Scholar 

  • Szalai G, Krantev A, Yordanova R et al (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714

    CAS  Google Scholar 

  • Tao S, Sun L, Ma C et al (2013) Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant Soil 372:309–318. doi:10.1007/s11104-013-1749-2

    Article  CAS  Google Scholar 

  • Tuma J, Skalicky M, Tumova L et al (2008) The translocation of zinc in Avena Sativa L. depending on fertilisation with zinc and mobile anions. Cereal Res Commun 36:1083–1086

    CAS  Google Scholar 

  • Tuma J, Skalicky M, Tumova L, Safrankova M (2010) Translocation of nickel in Avena sativa: the effect of accompanying mobile anions. Fresenius Environ Bull 19:2974–2980

    CAS  Google Scholar 

  • Tuma J, Skalicky M, Tumova L, Flidr J (2014) Influence of cadmium dose and form on the yield of oat (Avena Sativa L.) and the metal distribution in the plant. J Elem 19:795–809. doi:10.5601/jelem.2014.19.3.448

    Google Scholar 

  • Umar S, Moinuddin V (2002) Genotypic differences in yield and quality of groundnut as affected by potassium nutrition under erratic rainfall conditions. J Plant Nutr 25:1549–1562. doi:10.1081/PLN-120005407

    Article  CAS  Google Scholar 

  • Veselov D, Kudoyarova D, Symonyan M, Veselov S (2003) Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seedling. Bulg J Plant Physiol 29:353–359

    Google Scholar 

  • Vogel-Mikuš K, Arčon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451. doi:10.1007/s11104-009-0264-y

    Article  Google Scholar 

  • Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28:273–280. doi:10.1051/agro:2008010

    Article  CAS  Google Scholar 

  • Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149. doi:10.1007/s11104-008-9641-1

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in Soils and its Uptake and Movement within the Plant: a Review. Ann Bot 88:967–988. doi:10.1006/anbo.2001.1540

    Article  CAS  Google Scholar 

  • Wyszkowski M, Wyszkowska J (2006) The content of macroelements in spring barley (Hordeum vulgare L.) and theirs relations with above-ground parts mass of plants and the enzymatic activity of heavy metal contaminated soil. Pol J Environ Stud 15:212–221

    Google Scholar 

  • Wyszkowski M, Wyszkowska J (2009) The effect of soil contamination with cadmium on the growth and chemical composition of spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Parlar Scientific Publications, pp 1046–1053

  • Yadav K, Singh NB (2013) Effects of benzoic acid and cadmium toxicity on wheat seedlings. Chil J Agric Res 73:168–174. doi:10.4067/S0718-58392013000200013

    Article  Google Scholar 

  • Yu L, Gao R, Shi Q et al (2013) Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pak J Bot 45:813–819

    Google Scholar 

  • Zhao Z-Q, Zhu Y-G, Li H-Y et al (2004) Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum L.). Environ Int 29:973–978. doi:10.1016/S0160-4120(03)00081-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Particular Research Program, University of Hradec Kralove, No. 2108/2013 and by ESF under Project Number CZ.1.07./2.3.00/30.0052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Simek.

Additional information

Communicated by N.A. Anjum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simek, J., Tuma, J., Dohnal, V. et al. Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.). Acta Physiol Plant 38, 172 (2016). https://doi.org/10.1007/s11738-016-2192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2192-9

Keywords

Navigation