Skip to main content
Log in

Isolation and in silico characterization of a shikimate kinase from Cassia obtusifolia

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Shikimate kinase (SK), an indispensable enzyme in shikimate pathway, catalyzes the transfer of a phosphate from Adenosine triphosphate (ATP) to 3-hydroxyl of shikimate to form shikimate 3-phosphate. There are many active metabolites from shikimate pathway in Cassia obtusifolia. A new member of SKs from C. obtusifolia named CoSK was cloned and subjected to in silico characterization analysis. The constructed 3D structure of CoSK adopted α-β-α fold with five parallel β-sheets flanked by 12 α-helices. CoSK was shown to possess the potential ability to catalyze the phosphorylation of shikimate. Residues Lys118 and Arg223 binding with ATP and residue Asp137 binding with shikimate might be essential for phosphorylating shikimate. These results will provide useful information concerning the catalytic and physiology mechanism of SK in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SKM:

Shikimate

SK:

Shikimate kinase

ATP:

Adenosine triphosphate

NB:

Nucleotide binding

ESB:

Extended shikimate binding

DAF:

Days after flower

EM:

Energy minimization

MD:

Molecular dynamics

RMSD:

Root mean square deviation

RT-PCR:

Reverse transcriptase-polymerase chain reaction

cTP:

Chloroplast transit peptide

References

  • Arcuri HA, Zafalon GFD, Marucci EA, Bonalumi CE, da Silveira NJF, Machado JM, de Azevedo Jr WF, Palma MS (2010) SKPDB: a structural database of shikimate pathway enzymes. BMC Bioinformatics 11:12–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Arfken G, Romain J (1967) Mathematical methods for physicists. Phys Today 20:79

    Article  Google Scholar 

  • Armengot L, Marquès-Bueno MM, Soria-Garcia A, Müller M, Munné-Bosch S, Martínez MC (2014) Functional interplay between protein kinase CK2 and salicylic acid sustains PIN transcriptional expression and root development. Plant J 78:411–423

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA, Proenca AM, Rocha KB, De Azevedo Jr WF (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinformatics 7:352–365

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Cerasoli E, Kelly SM, Coggins JR, Lapthorn AJ, Clarke DT, Price NC (2003) Effects of salts on the function and conformational stability of shikimate kinase. BBA Proteins Proteom 1648:43–54

    Article  CAS  Google Scholar 

  • Chen YJ, Yu P, Luo JC, Jiang Y (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14:859–865

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coracini JD, De Azevedo Jr WF (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604

    Article  CAS  PubMed  Google Scholar 

  • Dalton JA, Jackson RM (2010) Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. J Mol Biol 399:645–661

    Article  CAS  PubMed  Google Scholar 

  • De Azevedo Jr WF (2011) Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 18:1353–1366

    Article  Google Scholar 

  • De Azevedo Jr WF, Canduri F, De Oliveira JS, Basso LA, Palma MS, Pereihenrra JH, Santos DS (2002) Molecular model of shikimate kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 295:142–148

    Article  Google Scholar 

  • Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604

    Article  CAS  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Meth Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Elumalai P, Liu H-L (2011) Homology modeling and dynamics study of aureusidin synthase—an important enzyme in aurone biosynthesis of snapdragon flower. Int J Biol Macromol 49:134–142

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Prot 2:953–971

    Article  CAS  Google Scholar 

  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154

    Article  Google Scholar 

  • Fucile G, Falconer S, Christendat D (2008) Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 4:1–10

    Article  Google Scholar 

  • Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D (2011) Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Sci 20:1125–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furumoto T, Hoshikuma A (2011) Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Phytochemistry 72:871–874

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD (2006) Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 364:411–423

    Article  CAS  PubMed  Google Scholar 

  • Heberlé G, De Azevedo Jr WF (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Ann Rev Plant Biol 50:473–503

    Article  CAS  Google Scholar 

  • Johansson L, Lindskog L, Silfversparre G, Cimander C, Nielsen KF, Lidén G (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions (pn/a). Biotechnol Bioeng 92:541–552

    Article  CAS  PubMed  Google Scholar 

  • Kasai K, Kanno T, Akita M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y (2005) Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. Planta 222:438–447

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Kim K-W, Kim D-S, Kim M-C, Jeon Y-D, Kim S-G, Jung H-J, Jang H-J, Lee B-C, Chung W-S, Hong S-H, Chung S-H, Um J-Y (2011) The protective effect of Cassia obtusifolia on DSS-induced colitis. Am J Chin Med 39:565–577

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Liu Q, Li Y, Wu Y, Yan HG (2000) H-1, C-13 and N-15 resonance assignments of Aquifex aeolicus shikimate kinase in complex with the substrate shikimate. J Biomol NMR 17:277–278

    Article  PubMed  Google Scholar 

  • Liu Z, Song T, Zhu Q, Wang W, Zhou J, Liao H (2014) De novo assembly and analysis of Cassia obtusifolia seed transcriptome to identify genes involved in the biosynthesis of active metabolites. Biosci Biotech Bioch 78:791–799

    Article  CAS  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann Rev Plant Biol 63:73–105

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pereira JH, De Oliveira JS, Canduri F, Dias MVB, Palma MS, Basso LA, Santos DS, De Azevedo Jr WF (2004) Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr D 60:2310–2319

    Article  PubMed  Google Scholar 

  • Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlić A, Quesada M, Quinn GB, Westbrook JD (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sali A (1995) Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1:270–277

    Article  CAS  PubMed  Google Scholar 

  • Shan S, Xia L, Ding X, Zhang Y, Hu S, Sun Y, Yu Z, Han L (2011) Homology modeling of Cry1Ac toxin-binding alkaline phosphatase receptor from Helicoverpa armigera and its functional interpretation. Chin J Chem 29:427–432

    Article  CAS  Google Scholar 

  • Sharma R, Panigrahi P, Suresh CG (2014) In-silico analysis of binding site features and substrate selectivity in plant flavonoid-3-O glycosyltransferases (F3GT) through molecular modeling, docking and dynamics simulation studies. PLoS One 9:e92636

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith AA, Caruso A (2013) In silico characterization and homology modeling of a cyanobacterial phosphoenolpyruvate carboxykinase enzyme. Struct Biol. doi:10.1155/2013/370820

    Google Scholar 

  • Sob SVT, Wabo HK, Tchinda AT, Tane P, Ngadjui BT, Ye Y (2010) Anthraquinones, sterols, triterpenoids and xanthones from Cassia obtusifolia. Biochem Sys Ecol 38:342–345

    Article  CAS  Google Scholar 

  • Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S (2014) MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30:1305–1307

    Article  CAS  PubMed  Google Scholar 

  • Van Gunsteren W, Berendsen H (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327

    Article  Google Scholar 

  • Vianna CP, De Azevedo Jr WF (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  • Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhu M, Zou J, Feng P, Fan G, Liu Z, Wang W (2013) Molecular modeling and docking of mannose-binding lectin from Lycoris radiata. Chem Res Chin Univ 29:1153–1158

    Article  CAS  Google Scholar 

  • Zhu Q, Zhu M, Fan G, Zou J, Feng P, Liu Z, Wang W (2014a) Molecular modeling and docking studies of 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase from Coptis chinensis. Bull Korean Chem Soc 35:63

    Google Scholar 

  • Zhu Q, Zou J, Zhu M, Liu Z, Feng P, Fan G, Wang W, Liao H (2014b) In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana. J Mol Model 20:1–10

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from National Natural Science Foundation of China (No. 31371232) and National Science and Technology Major Project of China (No. 2014ZX09304307001-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayu Zhou or Hai Liao.

Additional information

Communicated by L.A. Kleczkowski.

Z. Liu, Q. Zhu contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, Q., Li, Y. et al. Isolation and in silico characterization of a shikimate kinase from Cassia obtusifolia . Acta Physiol Plant 37, 85 (2015). https://doi.org/10.1007/s11738-015-1822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1822-y

Keywords

Navigation