Skip to main content
Log in

Exogenously applied 20-hydroxyecdysone increases the net photosynthetic rate but does not affect the photosynthetic electron transport or the content of photosynthetic pigments in Tetragonia tetragonioides L.

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytoecdysteroids are steroid compounds present in many plant species (sometimes in rather large amounts), but their biological role is still far from being clear. We have found that the exogenous application of 20-hydroxyecdysone (20E) to leaves of Tetragonia tetragonioides L. causes stimulation of its net photosynthetic rate (P N) but does not positively affect the photosynthetic electron transport or the content of photosynthetic pigments. The increase in P N was observed shortly after 20E treatment and was statistically significant during the 4th and 6th hours after treatment but not later, which could be perhaps caused by a strictly short-term window of opportunity for ecdysteroids to significantly affect photosynthetic processes. To our knowledge, these results are the first to suggest a new potential biological function of phytoecdysteroids—regulation of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

20E:

20-hydroxyecdysone

Car:

Carotenoids

Chl:

Chlorophyll

P N :

Net photosynthetic rate

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

References

  • Bajguz A, Koronka A (2001) Effect of ecdysone application on the growth and biochemical changes in Chlorella vulgaris cells. Plant Physiol Biochem 39:707–715. doi:10.1016/S0981-9428(01)01287-6

    Article  CAS  Google Scholar 

  • Bakrim A, Lamhamdi M, Sayah F, Chibi F (2007) Effect of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicon esculentum) seed germination and seedlings growth. Afr J Biotechnol 6:2792–2802

    CAS  Google Scholar 

  • Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N (2008) Ecdysteroids in spinach (Spinacia oleracea L.): biosynthesis, transport and regulation of levels. Plant Physiol Biochem 46:844–854. doi:10.1016/j.plaphy.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339. doi:10.1016/S0031-9422(01)00078-4

    Article  PubMed  CAS  Google Scholar 

  • Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol 72:126–141. doi:10.1002/arch.20334

    Article  PubMed  CAS  Google Scholar 

  • Dinan L, Savchenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58:1121–1132. doi:10.1007/PL00000926

    Article  PubMed  CAS  Google Scholar 

  • Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Dordrecht, pp. 3-45. doi:10.1007/978-1-4020-9112-4_1

  • Dreier SI, Towers GHN (1988) Activity of ecdysone in selected plant growth bioassays. J Plant Physiol 132:502–512. doi:10.1016/S0176-1617(88)80073-7

    Article  Google Scholar 

  • Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart J, Otoni WC (2008) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone—a review. Botany 86:978–987. doi:10.1139/B08-049

    Article  CAS  Google Scholar 

  • Golovatskaya IF (2004) Effect of ecdysterone on morphological and physiological processes in plants. Russ J Plant Physiol 51:452–458. doi:10.1023/B:RUPP.0000028689.97402.d5

    Article  Google Scholar 

  • Holá D (2011) Brassinosteroids and photosynthesis. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp. 143-192. doi:10.1007/978-94-007-0189-2_6

  • Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298. doi:10.1007/s11099-005-0048-4

    Article  CAS  Google Scholar 

  • Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259. doi:10.1007/s11738-010-0655-y

    Article  CAS  Google Scholar 

  • Jiang Y, Cheng F, Zhou Y, Xia X, Mao W, Shi K, Chen Z, Yu J (2012a) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394. doi:10.1016/j.bbrc.2012.08.100

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Cheng F, Zhou Y, Xia X, Mao W, Shi K, Chen Z, Yu J (2012b) Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zheijiang Univ-Sci B (Biomed Biotechnol) 13:811–823. doi:10.1631/jzus.B1200130

    Article  CAS  Google Scholar 

  • Jiang YP, Cheng F, Zhou YH, Xia XJ, Shi K, Yu JQ (2012c) Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environ Exp Bot 75:98–106. doi:10.1016/j.envexpbot.2011.09.002

    Article  CAS  Google Scholar 

  • Kamlar M, Uhlík O, Kohout L, Šanda M, Macek T (2010a) Affinity chromatography as the method for brassinosteroid-binding protein isolation. J Biotechnol 150:S490

    Article  Google Scholar 

  • Kamlar M, Uhlík O, Chlubnová I, Kohout L, Harmatha J, Ježek R, Šanda M, Pišvejcová A, Macek T (2010b) Affinity chromatography as a method of studying the mechanism of action of plant oxysterols. Chem Listy 104:215–222 (In Czech)

    CAS  Google Scholar 

  • Lafont R, Harmatha J, Marion-Poll F, Dinan L, Wilson ID: The ecdysone handbook, 3rd edn, on-line, http://ecdybase.org. Accessed 25 March 2013

  • Macháčková I, Vágner M, Sláma K (1995) Comparison between the effects of 20-hydroxyecdysone and phytohormones on growth and development in plants. Eur J Entomol 92:309–316

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol 104:236–257. doi:10.1016/j.jphotobiol.2010.12.010

    Article  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence analysis. Photosynth Res 52:147–155. doi:10.1023/A:1005896029778

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Uhlík O, Kamlar M, Kohout L, Ježek R, Harmatha J, Macek T (2008) Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein. Steroids 73:1433–1440. doi:10.1016/j.steroids.2008.07.009

    Article  PubMed  Google Scholar 

  • Walker D (1988) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis, 2nd edn. Oxygraphics, Sheffield

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol 144:307–313. doi:10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  • Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009a) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230:1185–1196. doi:10.1007/s00425-009-1016-1

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009b) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413. doi:10.1021/jf901915a

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Cheng Z, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720. doi:10.1111/j.1469-8137.2011.03745.x

    Article  PubMed  CAS  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi:10.1093/jxb/erh124

    Article  PubMed  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438. doi:10.1016/j.bbabio.2010.02.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Czech Science Foundation (Grant 501/11/1650), the Charles University in Prague (Grant SVV-2013-267205) and the Grant Agency of the Charles University in Prague (Grant B/BIO/612612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Holá.

Additional information

Communicated by M. Garstka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2013_1379_MOESM1_ESM.eps

Supplementary Fig. 1 The difference kinetics ΔWOJ=(WOJ 20E - WOJ CONTROL) revealing the K-band and calculated from the relative variable fluorescence WOJ=(Ft-F0)/(FJ-F0), where Ft represents the fluorescence intensity measured at any time during the recording period, FJ the fluorescence intensity at the J-step, and F0 the initial fluorescence intensity. Measurements were made in leaves of Tetragonia tetragonioides L. at various times (1, 2, 4, 6, 24, 48 or 72 hours) after treatment of plants with 2 mM aqueous solution of 20-hydroxyecdysone (20E) or water (Control). Mean values (n=8) are shown for each time point. (EPS 14889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holá, D., Kočová, M., Rothová, O. et al. Exogenously applied 20-hydroxyecdysone increases the net photosynthetic rate but does not affect the photosynthetic electron transport or the content of photosynthetic pigments in Tetragonia tetragonioides L.. Acta Physiol Plant 35, 3489–3495 (2013). https://doi.org/10.1007/s11738-013-1379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1379-6

Keywords

Navigation