Skip to main content

Advertisement

Log in

Response of adenine and pyridine metabolism during germination and early seedling growth under arsenic stress in Brassica juncea

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Adenine and pyridine nucleotides play vital roles in virtually all aspects of plant growth. This study analyzed the response of adenine and pyridine metabolism during germination and early seedling growth (ESG) of Brassica juncea exposed to two doses of arsenate (AsV), 100 and 250 μM, having non-significant or significant inhibitory effects, respectively, on germination and ESG. The ratio of NAD/NADP and NAD/NADH showed no significant change in control and 100 μM AsV, but increased significantly at 250 μM AsV during initial 24 h and also at 7th day. The activity of enzymes of NAD metabolism, viz. NAD kinase, NADP phosphatase, nicotinamidase and poly(ADP-ribose) polymerases showed significant change mostly at 250 μM AsV. Further, significant decrease was observed in the ratio of ATP/ADP and in the activities of adenylate kinase and apyrase at 250 μM AsV at 7th day. External supply of ATP (1 mM) to 100 and 250 μM AsV significantly improved germination percentage and germination strength of the seeds as compared to AsV treatments alone. The study concludes that with the increase in concentration of AsV, the balance of NAD/NADP, NAD/NADH and ATP/ADP and the activities of enzymes of adenine and pyridine metabolism were significantly altered and that these changes may be responsible for inhibitory effects of AsV on germination and ESG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Amor Y, Babiychuk E, Inzé D, Levine A (1998) The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett 440:1–7

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Stasolla C, Yin Y, Loukanina N, Thorpe TA (2005) De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Sci 169:107–114

    Article  CAS  Google Scholar 

  • Berrin J-G, Pierrugues O, Brutesco C, Alonso B, Montillet J-L, Roby D, Kazmaier M (2005) Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Genet Genomics 273:10–19

    Article  PubMed  CAS  Google Scholar 

  • Biederbick A, Kosan C, Kunz J, Elsässer H-P (2000) First apyrase splice variants have different enzymatic properties. J Biol Chem 275:19018–19024

    Article  PubMed  CAS  Google Scholar 

  • Caruso R, Campolo J, Dellanoce C, Mariele R, Parodi O, Accinni R (2004) Critical study of preanalytical and analytical phases of adenine and pyridine nucleotide assay in human whole blood. Anal Biochem 330:43–51

    Article  PubMed  CAS  Google Scholar 

  • Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564

    Article  PubMed  CAS  Google Scholar 

  • Chai MF, Wei PC, Chen QJ, An R, Chen J, Yang S, Wang XC (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J 47:665–674

    Article  PubMed  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plant 16:59–68

    Article  CAS  Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–100

    Article  PubMed  Google Scholar 

  • Fiske CH, Subbarow YJ (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Gallais S, Pou de Crescenzo MA, Laval-Martin DL (2000) Evidence of active NADP+ phosphatase in dormant seeds of Avena sativa L. J Exp Bot 51:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Hampton JG, Tekrony DM (1995) Handbook of vigour test methods, 3rd edn. The International Seed Testing Association, Zurich

    Google Scholar 

  • Hashida S, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824

    Article  PubMed  CAS  Google Scholar 

  • Hunt L, Gray JE (2009) The relationship between pyridine nucleotides and seed dormancy. New Phytol 181:62–70

    Article  PubMed  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD—new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Hunt L, Holdsworth M, Gray JE (2007) Nicotinamidase activity is important for germination in Arabidopsis. Plant J 51:341–351

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Kleczkowski LA (2006) Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. J Exp Bot 57:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Jha AB, Dubey RS (2005) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  Google Scholar 

  • Kleczkowski LA, Randall DD (1986) Maize leaf adenylate kinase. Purification and partial characterization. Plant Physiol 81:1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Lowry ΟΗ, Roseborough ΝJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  PubMed  CAS  Google Scholar 

  • Rai AN, Srivastava S, Paladi R, Suprasanna P (2011) Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma 249:725–736

    Article  PubMed  Google Scholar 

  • Singh N, Ma LQ, Vu JC, Raj A (2009) Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ Pollut 157:2300–2305

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–815

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Watanabe A, Tanaka A, Hashida SN, Kawai-Yamada M, Sonoike K, Uchimiya H (2006) Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant Cell Physiol 47:1678–1682

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029

    Article  PubMed  CAS  Google Scholar 

  • Ziegler M (2000) New functions of a long-known molecule: emerging roles of NAD in cellular signalling. Eur J Biochem 267:1550–1564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Srivastava.

Additional information

Communicated by J. van Staden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material

Online Resource 1 Effect of a range of As concentrations on germination and growth of Brassica seeds. (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S., Akkarakaran, J.J., Suprasanna, P. et al. Response of adenine and pyridine metabolism during germination and early seedling growth under arsenic stress in Brassica juncea . Acta Physiol Plant 35, 1081–1091 (2013). https://doi.org/10.1007/s11738-012-1146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1146-0

Keywords

Navigation