Skip to main content
Log in

Impact of low and high fluence rates of UV-B radiation on growth and oxidative stress in Phormidium foveolarum and Nostoc muscorum under copper toxicity: differential display of antioxidants system

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present study, impact of low (UV-BL) and high (UV-BH) fluence rates of UV-B on growth, oxidative stress and antioxidant system was studied in two cyanobacteria i.e. Phormidium foveolarum and Nostoc muscorum under Cu (2 and 5 μM) toxicity after 24 and 72 h of experiments. UV-BH and Cu treatment decreased growth of both the cyanobacteria and Cu induced decrease in growth was accompanied by a significant increase in Cu accumulation. Levels of reactive oxygen species (ROS), i.e. superoxide radicals (SOR; \( \text O_{2}^{\cdot\,-} \)) and hydrogen peroxide (H2O2) were significantly increased by Cu and UV-BH exposure which in turn accelerated lipid peroxidation (malondialdehyde: MDA) and protein oxidation (reactive carbonyl groups: RCG). Activities of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD) and glutathione-S-transferase (GST) were increased by both doses of Cu as well as UV-B. Conversely, Cu and UV-BH drastically decreased catalase (CAT) activity. After the commencement of 24 h of treatment with Cu alone and together with UV-BH, non-protein thiols (NP-SH) contents were decreased while after 72 h, a reverse trend was noticed. Unlike NP-SH, cysteine content decreased appreciably during the treatments. In contrast to this, low dose (UV-BL) of UV-B did not influence growth, SOR, H2O2, MDA and RCG contents. An improvement in CAT activity and NP-SH content was observed under Cu and UV-BL treatment; hence, UV-BL treatment resulted into certain degree of protection against Cu toxicity in both the organisms. Thus, the results showed that UV-BH and UV-BL exerted differential effects on both the organisms under Cu toxicity, and compared to N. muscorum, P. foveolarum was less affected by Cu and UV-BH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aebi II (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    Article  CAS  PubMed  Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci Paris 322:43–54

    Article  CAS  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MT, Newman JE (2003) Physiological responses of Gracilariopsis longissima (S.G. Gmelin) Steentoft, L.M. Irvine and Farnham (Rhodophyceae) to sublethal copper concentrations. Aquat Toxicol 64:201–213

    Article  CAS  PubMed  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230

    Article  CAS  PubMed  Google Scholar 

  • Brun LA, Maillet J, Hinsiger P, Pépin N (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Jenkins GI (1996) Distinct UV-B and UV-A blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 8:1555–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranovaá E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Article  Google Scholar 

  • Dominguez-Solis J, Guttierez-Alcala G, Romero L, Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DD (2004) Metabolism of natural and xenobiotics substrates by the plant glutathione-S-transferase superfamily. In: Sandermann H (ed) Molecular ecotoxicology of plants, ecological studies, vol 170. Spriger, Berlin, pp 17–50

    Chapter  Google Scholar 

  • Ellmann GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxyl ammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gahagen HE, Halm RE, Abeles FB (1968) Effect of ethylene on peroxidase activity. Physiol Plant 21:1270–1279

    Article  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    CAS  PubMed  Google Scholar 

  • Gajewska E, Sklodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Yu H, Brown MT (2007) Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. J Photochem Photobiol, B 89:117–124

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Reis SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  Google Scholar 

  • Han T, Kang SH, Park JS, Lee HK, Brown MT (2008) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol 86:176–184

    Article  CAS  PubMed  Google Scholar 

  • He YY, Häder DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-l-cysteine. J Photochem Photobiol, B 66:115–124

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269

    Article  CAS  PubMed  Google Scholar 

  • Hurtubise RD, Havel JE (1998) The effects of ultraviolet-B radiation on freshwater invertebrates: experiments with a solar simulator. Limnol Oceanogr 43:1082–1088

    Article  CAS  Google Scholar 

  • Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds to copper. Aquat Toxicol 91:1–9

    Article  PubMed  Google Scholar 

  • Karentz S, Cleaver JE, Mitchell DL (1991) DNA damage in the Antarctic. Nature 350:28

    Article  Google Scholar 

  • Kim BC, Tennessen DJ, Last RL (1998) UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J 15:667–674

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Lohscheider JN, Strittmatter M, Kupper H, Adamska I (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. strains depends on their ability for photoprotection. PLoS ONE 6(5):e20134. doi:10.1371/journal.pone.0020134

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant, Cell Environ 35:11–15

    CAS  Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione-S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Mazza CA, Zavala J, Scopel AL, Ballaré CL (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc Natl Acad Sci USA 96:980–985

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2011) Morphological and physiological responses of nine southern US rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation. Environ Exp Bot 70:174–184

    Article  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balserio EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    Article  CAS  Google Scholar 

  • Postius C, Kenter U, Wacker A, Ernst A, Böger P (1998) Light causes selection among two phycoerythrin-rich Synechococcus isolates from Lake Constance. FEMS Microbiol Ecol 25:171–178

    Article  CAS  Google Scholar 

  • Rai LC, Tyagi B, Mallick N, Rai PK (1995) Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum. Environ Exp Bot 35:177–185

    Article  CAS  Google Scholar 

  • Rai LC, Tyagi B, Rai PK, Mallick N (1998) Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacterium Anabaena doliolum. Environ Exp Bot 39:221–231

    Article  CAS  Google Scholar 

  • Shahbaz M, Tseng MH, Stuiver CEE, Koralewska A, Posthumus FS, Venema JH, Parmar S, Schat H, Hawkesford MJ, De Kok LJ (2010) Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. J Plant Physiol 167:438–446

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Häder DP, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Age Res Rev 9:79–90

    Article  CAS  Google Scholar 

  • Sinha RP, Häder DP (2000) Effects of UV-B radiation on cyanobacteria. Recent Res Dev Photochem Photobiol 4:239–246

    Google Scholar 

  • Smith RC, Baker KS (1979) Penetration of UV-B and biologically effective dose-rates in natural water. Photochem Photobiol 50:311–323

    Article  Google Scholar 

  • Stoiber TL, Shafer MM, Karner-Perkins DA, Hemming JDC, Armstrong DE (2007) Analysis of glutathione endpoint for measuring copper stress in Chlamydomonas reinhardtii. Environ Toxicol Chem 26:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper-and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang G, Chen K, Chen L, Hu C, Zhang D, Liu Y (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicol Environ Saf 69:150–157

    Article  CAS  PubMed  Google Scholar 

  • Wang QF, Hou YH, Miao JL, Li GY (2009) Effect of UV-B radiation on the growth and antioxidant enzymes of Antarctic sea ice microalgae Chlamydomonas sp ICE-L. Acta Physiol Plant 31:1097–1102

    Article  CAS  Google Scholar 

  • Wirstam M, Blomberg MRA, Siebahn PEM (1999) Reaction mechanism of compound I formation in heme peroxidases: a density functional theory study. J Am Chem Soc 121:10178–10185

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zavala JA, Scopel AL, Ballaré CL (2001) Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol 00:1–10

    Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to extend their thanks to The Head, Department of Botany, University of Allahabad, Allahabad for providing necessary lab facilities. The authors are also thankful to UGC, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad.

Additional information

Communicated by K. Trebacz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.P., Srivastava, P.K. & Prasad, S.M. Impact of low and high fluence rates of UV-B radiation on growth and oxidative stress in Phormidium foveolarum and Nostoc muscorum under copper toxicity: differential display of antioxidants system. Acta Physiol Plant 34, 2225–2239 (2012). https://doi.org/10.1007/s11738-012-1023-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1023-x

Keywords

Navigation