Skip to main content
Log in

Douleur et thermorégulation. La thermorégulation chez l’animal

Pain and thermoregulation. Thermoregulation in animals

  • Mise Au Point / Update
  • Published:
Douleur et Analgésie

Résumé

Les interactions entre thermorégulation et nociception s’exercent sur deux fronts, périphérique et central. Sur le front périphérique, plusieurs éléments sont à prendre en compte, qui sont des sources importantes de variation pour les « tests de douleur ». En outre, les structures cérébrales qui contrôlent la thermorégulation et la transmission spinale des messages nociceptifs sont très intimement liées sur le plan anatomique, notamment en ce qui concerne les voies effectrices descendantes, issues de la région bulbaire rostroventrale. Nous faisons le point sur l’acquisition des informations thermiques et sur les réponses de l’organisme qu’elles suscitent par l’intermédiaire des « thermoeffecteurs ». Nous décrivons les mécanismes centraux qui déterminent ces réponses qui, après intégration dans l’hypothalamus, sont déterminées par la mise en route de neurones sympathiques prémoteurs situés dans la région bulbaire rostroventrale et dont les axones cheminent dans les funiculus dorsolatéraux (DLF). Ainsi mis en place, ces éléments nous permettront d’envisager dans un prochain article les conséquences fonctionnelles des interactions entre thermorégulation et nociception qui s’exercent centralement.

Abstract

Interactions between thermoregulation and nociception are carried out on two fronts–peripheral and central. On the peripheral, a number of elements should be taken into account. These are significant sources of variation for “pain tests”. Furthermore, the brain structures which control thermoregulation and the spinal transmission of nociceptive messages are closely linked in the human anatomy, especially with regard to descending effector pathways, arising from the rostroventral bulbar region. We are reviewing the acquisition of thermal information and the body’s responses arising through the use of “thermoeffectors”. We will detail the central mechanisms which determine these responses which, after integration of the hypothalamus, are determined by the introduction of sympathetic premotor neurons located in the rostroventral bulbar region, including the axons routing through the dorsolateral funiculus (DLF). Thus implemented, in an upcoming article these elements enable us to envisage the functional consequences of interactions between thermoregulation and nociception carried out centrally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Bernard C (1865) Introduction à l’étude de la médecine expérimentale. J.B. Baillière et fils, Paris

    Google Scholar 

  2. Cannon WB (1932) The wisdom of the body. W.W. Norton & Company, New York, 312 p

    Google Scholar 

  3. Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–91

    Article  PubMed  CAS  Google Scholar 

  4. Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press, New York

    Book  Google Scholar 

  5. Romanovsky AA (2014) Skin temperature: its role in thermoregulation. Acta Physiol 210:498–507

    Article  CAS  Google Scholar 

  6. Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–79

    Article  PubMed  Google Scholar 

  7. Le Bars D, Pollin B, Plaghki L (2012) Quelle est la validité conceptuelle des tests et modèles animaux de douleurs? Douleur Analg 25:2–30

    Article  Google Scholar 

  8. Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178:209–24

    Article  PubMed  CAS  Google Scholar 

  9. Basbaum AI, Fields HL (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187:513–31

    Article  PubMed  CAS  Google Scholar 

  10. Barbaro NM, Heinricher MM, Fields HL (1986) Putative pain modulating neurons in the rostral ventral medulla: reflex-related activity predicts effects of morphine. Brain Res 366:203–10

    Article  PubMed  CAS  Google Scholar 

  11. Fields HL, Bry J, Hentall I, Zorman G (1983) The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 3:2545–52

    PubMed  CAS  Google Scholar 

  12. Fields HL, Barbaro NM, Heinricher MM (1988) Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res 77:245–57

    Article  PubMed  CAS  Google Scholar 

  13. Vanegas H, Barbaro NM, Fields HL (1984) Tail-flick related activity in medullospinal neurons. Brain Res 321:135–41

    Article  PubMed  CAS  Google Scholar 

  14. Barbaro NM, Heinricher MM, Fields HL (1989) Putative nociceptive modulatory neurons in the rostral ventromedial medulla of the rat display highly correlated firing patterns. Somatosens Mot Res 6:413–25

    Article  PubMed  CAS  Google Scholar 

  15. Fields HL, Vanegas H, Hentall ID, Zorman G (1983) Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature 306:684–6

    Article  PubMed  CAS  Google Scholar 

  16. Basbaum AI, Braz J, Ossipov MH, Porreca F (2009) The endogenous neuromodulation system. In: Krames E, Peckham PH, Rezai A (eds) Neuromodulation. San Diego: Academic Press, Burlington, London, pp 303–12

    Chapter  Google Scholar 

  17. Fields HL, Basbaum AI, Heinricher MM (2006) Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s Textbook of Pain. Churchill Livingstone, London, pp 125–42

    Chapter  Google Scholar 

  18. Heinricher MM, Ingram SL (2008) The brainstem and nociceptive modulation. In: Basbaum AI, Akimichi K, Gordon MS, Westheimer G (eds) The senses: a comprehensive reference. Elsevier Academic Press, pp 593–626

    Chapter  Google Scholar 

  19. Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  20. Leung CG, Mason P (1999) Physiological properties of raphe magnus neurons during sleep and waking. J Neurophysiol 81:584–95

    PubMed  CAS  Google Scholar 

  21. Mason P (2001) Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci 24:737–77

    Article  PubMed  CAS  Google Scholar 

  22. Mason P (2005) Deconstructing endogenous pain modulations. J Neurophysiol 94:1659–63

    Article  PubMed  CAS  Google Scholar 

  23. Mason P (2005) Ventromedial medulla: pain modulation and beyond. J Comp Neurol 493:2–8

    Article  PubMed  Google Scholar 

  24. Mason P (2006) Descending pain modulation as a component of homeostasis. In: Cervero F, Jensen TS (eds) Handbook of clinical neurology, vol. 81: Pain. Elsevier, pp 211–8

    Google Scholar 

  25. Mason P (2012) Medullary circuits for nociceptive modulation. Curr Opin Neurobiol 22:640–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Morgan MM, Whitney PK (2000) Immobility accompanies the antinociception mediated by the rostral ventromedial medulla of the rat. Brain Res 872:276–81

    Article  PubMed  CAS  Google Scholar 

  27. Nason MW Jr, Mason P (2004) Modulation of sympathetic and somatomotor function by the ventromedial medulla. J Neurophysiol 92:510–22

    Article  PubMed  Google Scholar 

  28. Lovick TA (1993) Integrated activity of cardiovascular and pain regulatory role in adaptative behavioural responses. Prog Neurobiol 40:631–44

    Article  PubMed  CAS  Google Scholar 

  29. Lovick TA (1997) The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp Physiol 82:31–41

    Article  PubMed  CAS  Google Scholar 

  30. Randich A, Maixner W (1984) Interactions between cardiovascular and pain regulatory systems. Neurosci Biobehav Rev 8:343–67

    Article  PubMed  CAS  Google Scholar 

  31. Thurston CL, Randich A (1992) Effects of vagal afferent stimulation on ON and OFF cells in the rostroventral medulla: relationships to nociception and arterial blood pressure. J Neurophysiol 67:180–96

    PubMed  CAS  Google Scholar 

  32. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  33. Blessing WW (2003) Lower brainstem pathways regulating sympathetically mediated changes in cutaneous blood flow. Cell Mol Neurobiol 23:527–38

    Article  PubMed  CAS  Google Scholar 

  34. Morrison SF (2011) 2010 Carl Ludwig distinguished lectureship of the APS neural control and autonomic regulation section: central neural pathways for thermoregulatory cold defense. J Appl Physiol 110:1137–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ (2010) Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109:27–33

    Article  PubMed  Google Scholar 

  36. Nakamura K, Morrison SF (2008) A thermosensory pathway that controls body temperature. Nat Neurosci 11:62–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Jones SL, Light AR (1990) Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J Comp Neurol 297:267–82

    Article  PubMed  CAS  Google Scholar 

  38. Edamura M, Aoki M (1989) A biphasic excitability change in hindlimb motoneurons evoked by stimulation of the nucleus raphes magnus in the cat. Comp Biochem Physiol A Comp Physiol 93:711–6

    Article  PubMed  CAS  Google Scholar 

  39. Holstege JC (1996) The ventro-medial medullary projections to spinal motoneurons: ultrastructure, transmitters and functional aspects. Prog Brain Res 107:159–81

    Article  PubMed  CAS  Google Scholar 

  40. Bacon SJ, Zagon A, Smith AD (1990) Electron microscopic evidence of a monosynaptic pathway between cells in the caudal raphe nuclei and sympathetic preganglionic neurons in the rat spinal cord. Exp Brain Res 79:589–602

    Article  PubMed  CAS  Google Scholar 

  41. Loewy AD (1981) Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res 222:129–33

    Article  PubMed  CAS  Google Scholar 

  42. Morrison SF, Gebber GL (1985) Axonal branching patterns and funicular trajectories of raphespinal sympathoinhibitory neurons. J Neurophysiol 53:759–72

    PubMed  CAS  Google Scholar 

  43. Hossaini M, Goos JA, Kohli SK, Holstege JC (2012) Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection. PLoS One 7: e35293

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lefler Y, Arzi A, Reiner K, et al (2008) Bulbospinal neurons of the rat rostromedial medulla are highly collateralized. J Comp Neurol 506:960–78

    Article  PubMed  Google Scholar 

  45. Nakamura K, Morrison SF (2007) Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue Am J Physiol Regul Integr Comp Physiol 292:R127–R36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Bratincsák A, Palkovits M (2005) Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135:525–32

    Article  PubMed  CAS  Google Scholar 

  47. Lomax P, Malveaux E, Smith AD (1964) Brain temperatures in the rat during exposure to low environmental temperatures. Am J Physiol 207:736–9

    PubMed  CAS  Google Scholar 

  48. Hensel H (1973) Neural processes in thermoregulation. Physiol Rev 53:948–1017

    PubMed  CAS  Google Scholar 

  49. Hensel H (1974) Thermoreceptors. Annu Rev Physiol 36:233–49

    Article  PubMed  CAS  Google Scholar 

  50. Schepers RJ, Ringkamp M (2009) Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev 33:205–12

    Article  PubMed  Google Scholar 

  51. Spray DC (1986) Cutaneous temperature receptors. Annu Rev Physiol 48:625–38

    Article  PubMed  CAS  Google Scholar 

  52. Caterina MJ (2007) Transientreceptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76

    Article  PubMed  CAS  Google Scholar 

  53. McKemy DD (2013) The molecular and cellular basis of cold sensation. ACS Chem Neurosci 4:238–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Rawls SM, Benamar K (2011) Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci 3:822–45

    Article  Google Scholar 

  55. Vriens J, Nilius B, Voets T (2014) Peripheral thermosensation in mammals. Nat Rev Neurosci 15:573–89

    Article  PubMed  CAS  Google Scholar 

  56. Wetsel WC (2011) Sensing hot and cold with TRP channels. Int J Hyperthermia 27:388–98

    Article  PubMed  CAS  Google Scholar 

  57. Calixto JB, Kassuya CA,André E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther 106:179–208

    Article  PubMed  CAS  Google Scholar 

  58. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–8

    Article  PubMed  CAS  Google Scholar 

  59. Peier AM, Moqrich A, Hergarden AC, et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–15

    Article  PubMed  CAS  Google Scholar 

  60. Story GM, Peier AM, Reeve AJ, et al (2003) ANKTM1, a TRPlike channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–29

    Article  PubMed  CAS  Google Scholar 

  61. Bautista DM, Siemens J, Glazer JM, et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–8

    Article  PubMed  CAS  Google Scholar 

  62. Colburn RW, Lubin ML, Stone DJ, et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–86

    Article  PubMed  CAS  Google Scholar 

  63. Dhaka A, Murray AN, Mathur J, et al (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–8

    Article  PubMed  CAS  Google Scholar 

  64. Tajino K, Matsumura K, Kosada K, et al (2007) Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am J Physiol Regul Integr Comp Physiol 293:R2128–R35

    Article  PubMed  CAS  Google Scholar 

  65. Bautista DM, Jordt SE, Nikai T, et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–82

    Article  PubMed  CAS  Google Scholar 

  66. Kwan KY, Allchorne AJ, Vollrath MA, et al (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–89

    Article  PubMed  CAS  Google Scholar 

  67. Güler AD, Lee H, Iida T, et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–14

    PubMed  Google Scholar 

  68. Peier AM, Reeve AJ, Andersson DA, et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–9

    Article  PubMed  CAS  Google Scholar 

  69. Smith GD, Gunthorpe MJ, Kelsell RE, et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–90

    Article  PubMed  CAS  Google Scholar 

  70. Watanabe H, Vriens J, Suh SH, et al (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–51

    Article  PubMed  CAS  Google Scholar 

  71. Xu H, Ramsey IS, Kotecha SA, et al (2002) TRPV3 is a calciumpermeable temperature-sensitive cation channel. Nature 418:181–6

    Article  PubMed  CAS  Google Scholar 

  72. Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci 9:628–35

    Article  PubMed  CAS  Google Scholar 

  73. Lee H, Iida T, Mizuno A, et al (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25:1304–10

    Article  PubMed  CAS  Google Scholar 

  74. Moqrich A, Hwang SW, Earley TJ, et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–72

    Article  PubMed  CAS  Google Scholar 

  75. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100:13698–703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Romanovsky AA, Almeida MC, Garami A, et al (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev Neurosci 3:655–66

    Article  CAS  Google Scholar 

  78. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–3

    Article  PubMed  CAS  Google Scholar 

  79. Hylden JL, Anton F, Nahin RL (1989) Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28:27–37

    Article  PubMed  CAS  Google Scholar 

  80. Li J, Xiong K, Pang Y, et al (2006) Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 498:539–51

    Article  PubMed  Google Scholar 

  81. Andrew, D, Craig AD (2001) Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J Physiol 537:489–95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Craig AD, Krout K, Andrew D (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86:1459–80

    PubMed  CAS  Google Scholar 

  83. Bratincsák A, Palkovits M (2004) Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience 127:385–97

    Article  PubMed  CAS  Google Scholar 

  84. Nakamura K, Morrison SF (2008) Preoptic mechanism for colddefensive responses to skin cooling. J Physiol 586:2611–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Bernard JF, Dallel R, Raboisson P, et al (1995) Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J Comp Neurol 353:480–505

    Article  PubMed  CAS  Google Scholar 

  86. Cechetto DF, Standaert DG, Saper CB (1985) Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J Comp Neurol 240:153–60

    Article  PubMed  CAS  Google Scholar 

  87. Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 353:506–28

    Article  PubMed  CAS  Google Scholar 

  88. Kobayashi A, Osaka T (2003) Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Arch 446:760–5

    Article  PubMed  CAS  Google Scholar 

  89. Nakamura K, Morrison SF (2010) A thermosensory pathway mediating heat-defense responses. Proc Natl Acad Sci USA 107:8848–53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Gupta BN, Nier K, Hensel H (1979) Cold-sensitive afferents from the abdomen. Pflugers Arch 380:203–4

    Article  PubMed  CAS  Google Scholar 

  91. Riedel W (1976) Warm receptors in the dorsal abdominal wall of the rabbit. Pflugers Arch 361:205–6

    Article  PubMed  CAS  Google Scholar 

  92. Romanovsky AA (2007) Thermoregulation: some concepts have changed functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292:R37–R46

    Article  PubMed  CAS  Google Scholar 

  93. Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93:177–209

    Article  PubMed  CAS  Google Scholar 

  94. Saper CB (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25:433–69

    Article  PubMed  CAS  Google Scholar 

  95. Guieu JD, Hardy JD (1970) Effects of heating and cooling of the spinal cord on preoptic unit activity. J Appl Physiol 29:675–83

    PubMed  CAS  Google Scholar 

  96. Tominaga M, Caterina MJ, Malmberg AB,et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–43

    Article  PubMed  CAS  Google Scholar 

  97. Nakayama T, Eisenman JS, Hardy JD (1961) Single unit activity of anterior hypothalamus during local heating. Science 134:560–1

    Article  PubMed  CAS  Google Scholar 

  98. Nakayama T, Hammel HT, et al (1963) Thermal stimulation of electrical activity of single units of the preoptic region. Am J Physiol 204:1122–6

    Google Scholar 

  99. Boulant JA (1974) The effect of firing rate on preoptic neuronal thermosensitivity. J Physiol 240:661–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48:639–54

    Article  PubMed  CAS  Google Scholar 

  101. Hammel HT, Hardy JD, Fusco MM (1960) Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Physiol 198:481–6

    PubMed  CAS  Google Scholar 

  102. Imai-Matsumura K, Matsumura K, Nakayama T (1984) Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn J Physiol 34:939–43

    Article  PubMed  CAS  Google Scholar 

  103. Thorington RW Jr (1966) The biology of rodent tails: a study of form and function. Arctic Aeromedical Laboratory TR-65-8

    Google Scholar 

  104. Young AA, Dawson NJ (1982) Evidence for on-off control of heat dissipation from the tail of the rat. Can J Physiol Pharmacol 60:392–8

    Article  PubMed  CAS  Google Scholar 

  105. Wu Y, Jiji LM, Lemons DE, Weinbaum S (1995) A nonuniform three-dimensional perfusion model of rat tail heat transfer. Phys Med Biol 40:789–806

    Article  PubMed  CAS  Google Scholar 

  106. Nagasaka T, Cabanac M, Hirata K, Nunomura T (1985) Control of local heat gain by vasomotor response of the hand. J Appl Physiol 63:1335–1338

    Google Scholar 

  107. Lin MT, Chern YF, Liu GG, Chang TC (1979) Studies on thermoregulation in the rat. Proc Natl Sci Counc Repub China 3:46–52

    Google Scholar 

  108. Knoppers AT (1942) La queue du rat, témoin de la régulation thermique. Arch Neer Physiol 26:364–406

    CAS  Google Scholar 

  109. Dawson NJ, Keber AW (1979) Physiology of heat loss from an extremity: the tail of the rat. Clin Exp Pharmacol Physiol 6:69–80

    Article  PubMed  CAS  Google Scholar 

  110. Grant RT (1963) Vasodilation and body warming in the rat. J Physiol 167:311–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Hellström B (1975) Heat vasodilatation of the rat tail. Can J Physiol Pharmacol 53:202–6

    Article  PubMed  Google Scholar 

  112. Little RA, Stoner HB (1968) The measurement of heat loss from the rat’s tail. Q J Exp Physiol Cogn Med Sci 53:76–83

    PubMed  CAS  Google Scholar 

  113. O’Leary DS, Johnson JM, Taylor WF (1985) Mode of neural control mediating rat tail vasodilation during heating. J Appl Physiol 59:1533–8

    PubMed  Google Scholar 

  114. Raman ER, Roberts MF, Vanhuyse VJ (1983) Body temperature control of rat tail blood flow. Am J Physiol 245:R426–R32

    PubMed  CAS  Google Scholar 

  115. Rand RP, Burton AC, Ing T (1965) The tail of the rat, in temperature regulation and acclimatization. Can J Physiol Pharmacol 43:257–67

    Article  PubMed  CAS  Google Scholar 

  116. Vanhoutte G, Verhoye M, Raman E, et al (2002) In-vivo noninvasive study of the thermoregulatory function of the blood vessels in the rat tail using magnetic resonance angiography. NMR Biomed 15:263–9

    Article  PubMed  CAS  Google Scholar 

  117. Kanosue K, Yanase-Fujiwara M, Hosono T (1994) Hypothalamic network for thermoregulatory vasomotor control. Am J Physiol 267:R283–R8

    PubMed  CAS  Google Scholar 

  118. Key BJ, Wigfield CC (1992) Changes in the tail surface temperature of the rat following injection of 5-hydroxytryptamine into the ventrolateral medulla. Neuropharmacology 31:717–23

    Article  PubMed  CAS  Google Scholar 

  119. Key BJ, Wigfield CC (1994) The influence of the ventrolateral medulla on thermoregulatory circulations in the rat. J Auton Nerv Syst 48:79–89

    Article  PubMed  CAS  Google Scholar 

  120. Lin MT (1982) An adrenergic link in the hypothalamic pathways which mediates morphine- and beta-endorphin-induced hyperthermia in the rat. Neuropharmacology 21:613–7

    Article  PubMed  CAS  Google Scholar 

  121. Lin MT, Chen CF, Pang IH (1978) Effect of ketamine on thermoregulation in rats. Can J Physiol Pharmacol 56:963–7

    Article  PubMed  CAS  Google Scholar 

  122. Zhang YH, Yanase-Fujiwara M, Hosono T, Kanosue K (1995) Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485:195–202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Rendell MS, McIntyre SF, Terando JV, et al (1993) Skin blood flow in the Wistar-Kyoto rat and the spontaneously hypertensive rat. Comp Biochem Physiol Comp Physiol 106:349–54

    Article  PubMed  CAS  Google Scholar 

  124. Rendell MS, Finnegan MF, Healy JC, et al (1998) The relationship of laser-Doppler skin blood flow measurements to the cutaneous microvascular anatomy. Microvasc Res 55:3–13

    Article  PubMed  CAS  Google Scholar 

  125. Kellogg DL, Hodges GJ, Orozco CR, et al (2007) Cholinergic mechanisms of cutaneous active vasodilation during heat stress in cystic fibrosis. J Appl Physiol 103:963–8

    Article  PubMed  Google Scholar 

  126. Wallin BG, Charkoudian N (2007) Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle & Nerve 36:595–614

    Article  CAS  Google Scholar 

  127. Anderson CR, Bergner A, Murphy SM (2006) How many types of cholinergic sympathetic neuron are there in the rat stellate ganglion? Neuroscience 140:567–76

    Article  PubMed  CAS  Google Scholar 

  128. Folkow B (1955) Nervous control of the blood vessels. Physiol Rev 35:629–63

    PubMed  CAS  Google Scholar 

  129. Johnson CD, Gilbey MP (1994) Sympathetic activity recorded from the rat caudal ventral artery in vivo. J Physiol 476:437–42

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Johnson CD, Gilbey MP (1996) On the dominant rhythm in the discharges of single postganglionic sympathetic neurones innervating the rat tail artery. J Physiol 497:241–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Johnson CD, Gilbey MP (1998) Focally recorded single sympathetic postganglionic neuronal activity supplying rat lateral tail vein. J Physiol 508:575–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Richardson D, Hu QF, Shepherd S (1991) Effects of invariant sympathetic activity on cutaneous circulatory responses to heat stress. J Appl Physiol 71:521–9

    PubMed  CAS  Google Scholar 

  133. Escourrou P, Freund PR, Rowell LB, Johnson DG (1982) Splanchnic vasoconstriction in heat-stressed men: role of reninangiotensin system. J Appl Physiol 52:1438–43

    PubMed  CAS  Google Scholar 

  134. Kregel KC, Wall PT, Gisolfi CV (1988) Peripheral vascular responses to hyperthermia in the rat. J Appl Physiol 64:2582–8

    PubMed  CAS  Google Scholar 

  135. Minson CT, Wladkowski SL, Pawelczyk JA, Kenney WL (1999) Age, splanchnic vasoconstriction, and heat stress during tilting. Am J Physiol 276:R203–R12

    PubMed  CAS  Google Scholar 

  136. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci 16:74–104

    Article  CAS  Google Scholar 

  137. Nakamura K, Matsumura K, Hubschle T, et al (2004) Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci 24:5370–80

    Article  PubMed  CAS  Google Scholar 

  138. Rathner JA, McAllen RM (1998) The lumbar preganglionic sympathetic supply to rat tail and hindpaw. J Auton Nerv Syst 69:127–31

    Article  PubMed  CAS  Google Scholar 

  139. Smith JE, Jansen AS, Gilbey MP, Loewy AD (1998) CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res 786:153–64

    Article  PubMed  CAS  Google Scholar 

  140. Coulon P (2006) Un usage « sympathique » des virus neurotropes: le traçage transneuronal chez les mammifères. Virologie 10:95–108

    Google Scholar 

  141. Tóth IE, Tóth DE, Boldogkoi Z, et al (2006) Serotoninsynthesizing neurons in the rostral medullary raphé/parapyramidal region transneuronally labelled after injection of pseudorabies virus into the rat tail. Neurochem Res 31:277–86

    Article  PubMed  CAS  Google Scholar 

  142. de Menezes RC, Ootsuka Y, Blessing WW (2009) Sympathetic cutaneous vasomotor alerting responses (SCVARs) are associated with hippocampal theta rhythm in non-moving conscious rats. Brain Res 1298:123–30

    Article  PubMed  CAS  Google Scholar 

  143. Mohammed M, Kulasekara K, de Menezes RC, et al (2013) Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats. Neuroscience 228:13–22

    Article  PubMed  CAS  Google Scholar 

  144. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  145. Golozoubova V, Cannon B, Nedergaard J (2006) UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Endocrinol Metab 291:E350–E7

    Article  PubMed  CAS  Google Scholar 

  146. Ootsuka Y, McAllen RM (2006) Comparison between two rat sympathetic pathways activated in cold defense. Am J Physiol Regul Integr Comp Physiol 291:R589–R95

    Article  PubMed  CAS  Google Scholar 

  147. Owens NC, Ootsuka Y, Kanosue K, McAllen RM (2002) Thermoregulatory control of sympathetic fibres supplying the rat’s tail. J Physiol 543:849–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  148. Gao B, Kikuchi-Utsumi K, Ohinata H, et al (2003) Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats. Jpn J Physiol 53:205–13

    Article  PubMed  CAS  Google Scholar 

  149. Marks A, Vianna DM, Carrive P (2009) Nonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat. Am J Physiol Regul Integr Comp Physiol 296:R1239–R47

    Article  PubMed  CAS  Google Scholar 

  150. Mohammed M, Ootsuka Y, Blessing W (2014) Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am J Physiol Regul Integr Comp Physiol 306:R394–R400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Shibata H, Nagasaka T (1984) Role of sympathetic nervous system in immobilization- and cold-induced brown adipose tissue thermogenesis in rats. Jpn J Physiol 34:103–11

    Article  PubMed  CAS  Google Scholar 

  152. Cypess AM, Lehman S, Williams G, et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  153. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E52

    Article  PubMed  CAS  Google Scholar 

  154. van Marken-Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–8

    Article  PubMed  Google Scholar 

  155. Virtanen KA, Lidell ME, Orava J, et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–25

    Article  PubMed  CAS  Google Scholar 

  156. Nakamura Y, Nakamura K, Matsumura K, et al (2005) Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur J Neurosci 22:3137–46

    Article  PubMed  PubMed Central  Google Scholar 

  157. DiMicco JA, Zaretsky DV (2007) The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R47–R63

    Article  PubMed  CAS  Google Scholar 

  158. Fontes MA, Xavier CH, de Menezes RC, Dimicco JA (2011) The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 184:64–74

    Article  PubMed  CAS  Google Scholar 

  159. Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R28

    Article  PubMed  CAS  Google Scholar 

  160. Palmes ED, Park CR (1965) The regulation of body temperature during fever. Arch Envir Health 11:749–59

    Article  CAS  Google Scholar 

  161. Saper CB, Breder CD (1994) The neurologic basis of fever. N Engl J Med 330:1880–6

    Article  PubMed  CAS  Google Scholar 

  162. Hübschle T, McKinley MJ, Oldfield BJ (1998) Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus. Brain Res 806:219–31

    Article  PubMed  Google Scholar 

  163. Jansen AS, Horst Ter GJ, Mettenleiter TC, Loewy AD (1992) CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 572:253–60

    Article  PubMed  CAS  Google Scholar 

  164. Whyte DG, Johnson AK (2005) Lesions of the anteroventral third ventricle region (AV3V) disrupt cardiovascular responses to an elevation in core temperature. Am J Physiol Regul Integr Comp Physiol 288:R1783–R90

    Article  PubMed  CAS  Google Scholar 

  165. Shibasaki M, Aoki K, Morimoto K, et al (2009) Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans. Am J Physiol Regul Integr Comp Physiol 297:R1706–R12

    Article  PubMed  CAS  Google Scholar 

  166. Baker MA, Doris PA (1982) Control of evaporative heat loss during changes in plasma osmolality in the cat. J Physiol 328:535–45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  167. Takamata A, Mack GW, Gillen CM,et al (1995) Osmoregulatory modulation of thermal sweating in humans: reflex effects of drinking. Am J Physiol 268:R414–R22

    PubMed  CAS  Google Scholar 

  168. Turlejska E, Baker MA (1986) Elevated CSF osmolality inhibits thermoregulatory heat loss responses. Am J Physiol 251:R749–R54

    PubMed  CAS  Google Scholar 

  169. Flouris AD (2011) Functional architecture of behavioural thermoregulation. Eur J Appl Physiol 111:1–8

    Article  PubMed  Google Scholar 

  170. Nagashima K, Nakai S, Tanaka M, Kanosue K (2000) Neuronal circuitries involved in thermoregulation Auton Neurosci 85:18–25

    Article  CAS  PubMed  Google Scholar 

  171. Roberts WW, Martin JR (1977) Effects of lesions in central thermosensitive areas on thermoregulatory responses in rat. Physiol Behav 19:503–11

    Article  PubMed  CAS  Google Scholar 

  172. Almeida MC, Steiner, AA, Branco LGS, Romanovsky AA (2006) Neural substrate of cold-seeking behavior in endotoxin shock. PloS one 20;1:e1

    Article  CAS  Google Scholar 

  173. Carlisle HJ (1969) Effect of preoptic and anterior hypothalamic lesions on behavioral thermoregulation in the cold. J Comp Physiol Psychol 69:391–402

    Article  PubMed  CAS  Google Scholar 

  174. Satinoff E, Rutstein J (1970) Behavioral thermoregulation in rats with anterior hypothalamic lesions. J Comp Physiol Psychol 71:77–82

    Article  PubMed  CAS  Google Scholar 

  175. Schulze G, Tetzner M, Topolinski H (1981) Operant thermoregulation of rats with anterior hypothalamic lesions. Naunyn Schmiedebergs Arch Pharmacol 318:43–8

    Article  PubMed  CAS  Google Scholar 

  176. Honma K, Hiroshige T (1978) Simultaneous determination of circadian rhythms of locomotor activity and body temperature in the rat. Jpn J Physiol 28:159–69

    Article  PubMed  CAS  Google Scholar 

  177. Closa D, Gómez-Sierra JM, Latres E, et al (1993) Short-term oscillations of aortic core body temperature, thermogenic organ blood flow in the rat. Exp Physiol 78:243–53

    Article  PubMed  CAS  Google Scholar 

  178. Holstein-Rathlou NH, He J, Wagner AJ, Marsh DJ (1995) Patterns of blood pressure variability in normotensive and hypertensive rats. Am J Physiol 269:R1230–R9

    PubMed  CAS  Google Scholar 

  179. Blessing W, Mohammed M, Ootsuka Y (2012) Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats. Physiol Behav 105:966–74

    Article  PubMed  CAS  Google Scholar 

  180. Blessing W, Mohammed M, Ootsuka Y (2013) Brown adipose tissue thermogenesis, the basic rest-activity cycle, meal initiation, and bodily homeostasis in rats. Physiol Behav 121:61–9

    Article  PubMed  CAS  Google Scholar 

  181. Ootsuka Y, de Menezes RC, Zaretsky DV, et al (2009) Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience 164:849–61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  182. Ootsuka Y, Kulasekara K, de Menezes RC, Blessing WW (2011) SR59230A, a beta-3 adrenoceptor antagonist, inhibits ultradian brown adipose tissue thermogenesis and interrupts associated episodic brain and body heating. Am J Physiol Regul Integr Comp Physiol 301:R987–R94

    Article  PubMed  CAS  Google Scholar 

  183. McCue MD (2006) Specific dynamic action: a century of investigation. Comp Biochem Physiol A Mol Integr Physiol 144:381–94

    Article  PubMed  CAS  Google Scholar 

  184. Chen XM, Hosono T, Yoda T, et al (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512:883–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  185. Osaka T (2004) Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 287:R306–R13

    Article  PubMed  CAS  Google Scholar 

  186. Szymusiak R, Satinoff E (1982) Acute thermoregulatory effects of unilateral electrolytic lesions of the medial and lateral preoptic area in rats. Physiol Behav 28:161–70

    Article  PubMed  CAS  Google Scholar 

  187. Zaretsky DV, Hunt JL, Zaretskaia MV, DiMicco JA (2006) Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci Lett 397:291–6

    Article  PubMed  CAS  Google Scholar 

  188. Uschakov A, Gong H, McGinty D, Szymusiak R (2007) Efferent projections from the median preoptic nucleus to sleepand arousal-regulatory nuclei in the rat brain. Neuroscience 150:104–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  189. Gong H, McGinty D, Guzman-Marin R, et al (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556:935–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  190. Nakamura K, Matsumura K, Kaneko T, et al (2002) The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J Neurosci 22:4600–10

    PubMed  CAS  Google Scholar 

  191. Romanovsky AA (2004) Do fever and anapyrexia exist? Analysis of set point-based definitions. Am J Physiol Regul Integr Comp Physiol 287:R992–R5

    Article  PubMed  CAS  Google Scholar 

  192. Bligh J (2006) A theoretical consideration of the means whereby the mammalian core temperature is defended at a null zone. J Appl Physiol 100:1332–7

    Article  PubMed  Google Scholar 

  193. Morrison SF, Madden CJ, Tupone D (2012) Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) pii:00005

    Google Scholar 

  194. Rothwell NJ, Stock MJ, Thexton AJ (1983) Decerebration activates thermogenesis in the rat. J Physiol 34:215–22

    Google Scholar 

  195. Morrison SF, Cao WH, Madden CJ (2004) Dorsomedial hypothalamic and brainstem pathways controlling thermogenesis in brown adipose tissue. J Therm Biol 29:333–7

    Article  CAS  Google Scholar 

  196. Rathner JA, Morrison SF (2006) Rostral ventromedial periaqueductal gray: a source of inhibition of the sympathetic outflow to brown adipose tissue. Brain Res 1077:99–107

    Article  PubMed  CAS  Google Scholar 

  197. Cano G, Passerin AM, Schiltz JC, et al (2003) Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460:303–26

    Article  PubMed  Google Scholar 

  198. Elmquist JK, Scammell TE, Jacobson CD, Saper CB (1996) Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J Comp Neurol 371:85–103

    Article  PubMed  CAS  Google Scholar 

  199. Sarkar S, Zaretskaia MV, Zaretsky DV, et al (2007) Stress- and lipopolysaccharide-induced c-fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: a triple immunofluorescent labeling study. Eur J Neurosci 26:2228–38

    Article  PubMed  Google Scholar 

  200. Yoshida K, Maruyama M, Hosono T, et al (2002) Fos expression induced by warming the preoptic area in rats. Brain Res 933:109–17

    Article  PubMed  CAS  Google Scholar 

  201. Cao WH, Fan W, Morrison SF (2004) Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126:229–40

    Article  PubMed  CAS  Google Scholar 

  202. Zaretskaia MV, Zaretsky DV, Shekhar A, DiMicco JA (2002) Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats. Brain Res 928:113–25

    Article  PubMed  CAS  Google Scholar 

  203. Madden CJ, Morrison SF (2004) Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandinevoked thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 286:R320–R5

    Article  PubMed  CAS  Google Scholar 

  204. Zaretskaia MV, Zaretsky DV, DiMicco JA (2003) Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection micro-injection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci Lett 340:1–4

    Article  PubMed  CAS  Google Scholar 

  205. Tanaka M, Tonouchi M, Hosono T, et al (2001) Hypothalamic region facilitating shivering in rats. Jpn J Physiol 51:625–9

    Article  PubMed  CAS  Google Scholar 

  206. Hermann DM, Luppi PH, Peyron C, et al (1997) Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application of choleratoxin (subunit b). J Chem Neuroanat 13:1–21

    Article  PubMed  CAS  Google Scholar 

  207. Samuels BC, Zaretsky DV, DiMicco JA (2002) Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol 538:941–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  208. Yoshida K, Li X, Cano G, et al (2009) Parallel preoptic pathways for thermoregulation. J Neurosci 29:11954–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  209. Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 276:R1569–R78

    PubMed  CAS  Google Scholar 

  210. Jansen AS, Nguyen XV, Karpitskiy V, et al (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–6

    Article  PubMed  CAS  Google Scholar 

  211. Oldfield BJ, Giles ME, Watson A, et al (2002) The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110:515–26

    Article  PubMed  CAS  Google Scholar 

  212. Yoshida K, Nakamura K, Matsumura K, et al (2003) Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur J Neurosci 18:1848–60

    Article  PubMed  Google Scholar 

  213. Kerman IA, Enquist LW, Watson SJ, Yates BJ (2003) Brainstem substrates of sympatho-motor circuitry identified using transsynaptic tracing with pseudorabies virus recombinants. J Neurosci 23:4657–66

    PubMed  CAS  Google Scholar 

  214. Brown JW, Sirlin EA, Benoit AM, et al (2008) Activation of 5-HT1A receptors in medullary raphe disrupts sleep and decreases shivering during cooling in the conscious piglet. Am J Physiol Regul Integr Comp Physiol 294:R884–R94

    Article  PubMed  CAS  Google Scholar 

  215. Tanaka M, Owens NC, Nagashima K, et al (2006) Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphe. J Physiol (Lond) 572:569–83

    Article  CAS  Google Scholar 

  216. Matsumura K, Cao C, Ozaki M, et al (1998) Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharideinduced fever: light and electron microscopic immunocytochemical studies. J Neurosci 18:6279–89

    PubMed  CAS  Google Scholar 

  217. Lkhagvasuren B, Nakamura Y, Oka T, et al (2011) Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur J Neurosci 34:1442–52

    Article  PubMed  Google Scholar 

  218. Nakamura K, Wu SX, Fujiyama F, et al (2004) Independent inputs by VGLUT2–and VGLUT3–positive glutamatergic terminals onto rat sympathetic preganglionic neurons. Neuroreport 15:431–6

    Article  PubMed  CAS  Google Scholar 

  219. Stornetta RL, Rosin DL, Simmons JR, et al (2005) Coexpression of vesicular glutamate transporter-3 and gamma-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 492:477–94

    Article  PubMed  CAS  Google Scholar 

  220. Madden CJ, Morrison SF (2006) Serotonin potentiates sympathetic responses evoked by spinal NMDA. J Physiol 577:525–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  221. Ootsuka Y, Blessing WW (2005) Activation of slowly conducting medullary raphe-spinal neurons, including serotonergic neurons, increases cutaneous sympathetic vasomotor discharge in rabbit. Am J Physiol Regul Integr Comp Physiol 288:R909–R18

    Article  PubMed  CAS  Google Scholar 

  222. Hodges MR, Tattersall GJ, Harris MB, et al (2008) Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 28:2495–505

    Article  PubMed  CAS  Google Scholar 

  223. Ray RS, Corcoran AE, Brust RD, et al (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–42

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  224. Morrison SF (2004) Activation of 5-HT1A receptors in raphe pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis. Am J Physiol Regul Integr Comp Physiol 286:R832–R7

    Article  PubMed  CAS  Google Scholar 

  225. Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589:3641–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  226. Hjorth S (1985) Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. J Neural Transm 61:131–5

    Article  PubMed  CAS  Google Scholar 

  227. Goodwin GM, De Souza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24:1187–94

    CAS  Google Scholar 

  228. Blier P, Seletti B, Gilbert F, et al (2002) Serotonin 1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. Neuropsychopharmacology 27:301–8

    Article  PubMed  CAS  Google Scholar 

  229. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–152

    Article  PubMed  CAS  Google Scholar 

  230. Helke CJ, Capuano S, Tran N, Zhuo H (1997) Immunocytochemical studies of the 5-HT (1A) receptor in ventral medullaryneurons that project to the intermediolateral cell column and contain serotonin or tyrosine hydroxylase immunoreactivity. J Comp Neurol 379:261–70

    Article  PubMed  CAS  Google Scholar 

  231. Fields HL (1988) Sources of variability in the sensation of pain. Pain 33:195–200

    Article  PubMed  CAS  Google Scholar 

  232. Fields HL (1989) Pain modulation: opiates and chronic pain. NIDA Res Monogr 95:92–101

    PubMed  CAS  Google Scholar 

  233. Fields HL, Basbaum AI (1978) Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–48

    Article  PubMed  CAS  Google Scholar 

  234. Fields HL, Heinricher MM (1985) Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 308:361–74

    Article  PubMed  CAS  Google Scholar 

  235. Fields HL, Heinricher MM (1989) Brainstem modulation of nociceptor-driven withdrawal reflexes. Ann NY Acad Sci 563:34–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Le Bars.

Additional information

Nous dédions cet article à notre collègue et ami Bernard Pollin qui nous a quittés brutalement. Depuis de nombreuses années, sa contribution à notre travail d’équipe a été essentielle et déterminante. Nous lui en serons reconnaissants à jamais.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bitar, N., Le Bars, D. & Neurosciences Paris-Seine. Douleur et thermorégulation. La thermorégulation chez l’animal. Douleur analg 28, 186–205 (2015). https://doi.org/10.1007/s11724-015-0437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-015-0437-9

Mots clés

Keywords

Navigation