Skip to main content
Log in

Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belder P, Bouman B A M, Cabangon R, Lu G, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 65(3): 193–210

    Article  Google Scholar 

  • Biradar C M, Xiao X M (2011). Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. Int J Remote Sens, 32(2): 367–386

    Article  Google Scholar 

  • Cohen W B, Yang Z G, Kennedy R (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync- Tools for calibration and validation. Remote Sens Environ, 114(12): 2911–2924

    Article  Google Scholar 

  • Congalton R G (1991). A review of asessing the accuracy of classifications of remotely sensed data. Remote Sens Environ, 37 (1): 35–46

    Article  Google Scholar 

  • Döll P (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change, 54(3): 269–293

    Article  Google Scholar 

  • Dong JW, Xiao XM, Chen B Q, Torbick N, Jin C, Zhang G L, Biradar C (2013). Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens Environ, 134: 392–402

    Article  Google Scholar 

  • Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A, Egorov A, Chini L, Justice C O, Townshend J R G (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850–853

    Article  Google Scholar 

  • Huang C Q, Coward S N, Masek J G, Thomas N, Zhu Z L, Vogelmann J E (2010a). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ, 114(1): 183–198

    Article  Google Scholar 

  • Huang N, Wang Z M, Liu D W, Niu Z (2010b). Selecting sites for converting farmlands to wetlands in the Sanjiang Plain, Northeast China, based on remote sensing and GIS. Environ Manage, 46(5): 790–800

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1–2): 195–213

    Article  Google Scholar 

  • Huete A R, Liu H Q, Batchily K, van Leeuwen W (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ, 59(3): 440–451

    Article  Google Scholar 

  • Kennedy R E, Yang Z G, Cohen W B (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sens Environ, 114(12): 2897–2910

    Article  Google Scholar 

  • Kuenzer C, Knauer K (2013). Remote sensing of rice crop areas. Int J Remote Sens, 34(6): 2101–2139

    Article  Google Scholar 

  • Laba M, Smith S D, Degloria S D (1997). Landsat-based land cover mapping in the lower Yuna River watershed in the Dominican Republic. Int J Remote Sens, 18(14): 3011–3025

    Article  Google Scholar 

  • Li C S, Mosier A, Wassmann R, Cai Z C, Zheng X H, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004). Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles, 18(1): GB1043

    Article  Google Scholar 

  • Li P, Feng Z M, Jiang L G, Liu Y J, Xiao X M (2012). Changes in rice cropping systems in the Poyang Lake Region, China during 2004? 2010. J Geogr Sci, 22(4): 653–668

    Article  Google Scholar 

  • Liu J, Liu M, Tian H, Zhuang D, Zhang Z, Zhang W, Tang X, Deng X (2005). Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ, 98(4): 442–456

    Article  Google Scholar 

  • Masek J G, Huang C Q, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008). North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ, 112(6): 2914–2926

    Article  Google Scholar 

  • McCloy K R, Smith F R, Robinson M R (1987). Monitoring rice areas using LANDSAT MSS data. Int J Remote Sens, 8(5): 741–749

    Article  Google Scholar 

  • Müller H, Rufin P, Griffiths P, Barros Siqueira A J, Hostert P (2015). Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ, 156: 490–499

    Article  Google Scholar 

  • Okamoto K, Fukuhara M (1996). Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM. Int J Remote Sens, 17(9): 1735–1749

    Article  Google Scholar 

  • Okamoto K, Yamakawa S, Kawashima H (1998). Estimation of flood damage to rice production in North Korea in 1995. Int J Remote Sens, 19(2): 365–371

    Article  Google Scholar 

  • Panigrahy S, Parihar J S (1992). Role of middle infrared bands of Landsat Thematic Mapper in determining the classification accuracy of rice. Int J Remote Sens, 13(15): 2943–2949

    Article  Google Scholar 

  • Qiu J, Tang H, Frolking S, Boles S, Li C, Xiao X, Liu J, Zhuang Y, Qin X (2003). Mapping single-, double-, and triple-crop agriculture in China at 0.5° 0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto Int, 18(2): 3–13

    Article  Google Scholar 

  • Rao P P N, Rao V R (1987). Rice crop identification and area estimation using remotely-sensed data from Indian cropping patterns. Int J Remote Sens, 8(4): 639–650

    Article  Google Scholar 

  • Richards J A eds (1999). Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag

    Google Scholar 

  • Sakamoto T, van Cao P, van Nguyen N, Kotera A, Yokozawa M (2009a). Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS imagery. Photogramm Eng Remote Sensing, 75(4): 413–424

    Article  Google Scholar 

  • Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N, Yokozawa M (2006). Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ, 100(1): 1–16

    Article  Google Scholar 

  • Sakamoto T, Van Phung C, Kotera A, Van Nguyen K D, Yokozawa M (2009b). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landsc Urban Plan, 92(1): 34–46

    Article  Google Scholar 

  • Shalaby A, Tateishi R (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr, 27(1): 28–41

    Article  Google Scholar 

  • Sun H, Huang J, Huete A R, Peng D, Zhang F (2009). Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. Journal of Zhejiang University SCIENCE A, 10: 1509–1522

    Article  Google Scholar 

  • Tucker C J (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 8(2): 127–150

    Article  Google Scholar 

  • Turner M D, Congalton R G (1998). Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. Int J Remote Sens, 19(1): 21–41

    Article  Google Scholar 

  • Van Nguyen N, Ferrero A (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1): 1–9

    Article  Google Scholar 

  • Vermote E F, ElSaleous N, Justice C O, Kaufman Y J, Privette J L, Remer L, Roger J C, Tanre D (1997). Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. J Geophys Res, D, Atmospheres, 102(D14): 17131–17141

    Article  Google Scholar 

  • Xiao X M, Boles S, Frolking S, Li C S, Babu J Y, Salas W, Moore B III (2006). Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ, 100(1): 95–113

    Article  Google Scholar 

  • Xiao X M, Boles S, Liu J Y, Zhuang D F, Frolking S, Li C S, Salas W, Moore B III (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ, 95(4): 480–492

    Article  Google Scholar 

  • Xiao X M, Zhang Q Y, Braswell B, Urbanski S, Boles S, Wofsy S, Berrien M, Ojima D (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ, 91(2): 256–270

    Article  Google Scholar 

  • Xie J (2013). Classification of wetlands using object-oriented method and multi-season remote sensing images in Sanjiang Plain. Dissertation for Master degree. Available from China knowledge Resource Integrated Database (in Chinese)

    Google Scholar 

  • Zhang Y, Wang Y Y, Su S L, Li C S (2011). Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences, 8 (5): 1225–1235

    Article  Google Scholar 

  • Zhong L, Gong P, Biging G S (2014). Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens Environ, 140: 1–13

    Article  Google Scholar 

  • Zhu Z, Woodcock C E (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ, 118: 83–94

    Article  Google Scholar 

  • Zhu Z, Woodcock C E, Olofsson P (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ, 122: 75–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Xiao, X., Dong, J. et al. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China. Front. Earth Sci. 10, 49–62 (2016). https://doi.org/10.1007/s11707-015-0518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-015-0518-3

Keywords

Navigation